

5580 Enterprise Pkwy. Fort Myers, FL 33905

Office: 239-694-0089 Fax: 239-694-0031

www.mcscontrols.com

Needs

# MAGNUM RTU MANUAL

Revision 3.4.3- 2023-07-20 View Changes made since last Version Release, see page 2

*Firmware Ver. RTU 17.72B2 and higher MCS Total Solution for all your Control* 

RoHS Compliant

MICRO CONTROL SYSTEMS

**Energy Efficient and RoHS Compliant** 

For Latest changes:

MCS RTU Manual additions / changes since last Revision 3.3.1

- 1. Chapter 32 added RTU Unit and Compressor State Chart pages 144-146
- 2. Chapter 35 Setpoints Changes descriptions to setpoints 251-255
- 3. Chapter 4 Cooling Information Compressor
  - a. 4.8 UNLOAD DELAY- RECIP/VFD COMPRESSORS- MCS-CONFIG Ver. 18.01Y page 27

b. 4.9. EMERGENCY STOP RELAY - CIRCUIT BASE - MCS-CONFIG Ver. 18.01Y - page 27

- 4. Outdoor Air Damper Proof before starting Fan with MAGNUM RTU firmware update 17.72B2
- 5. Added setpoint 132 with description
- 6. Added new options for Dehumid "Stasge On and Off by Control Sensor"
- 7. Chapter 31 Capacity Control Logic Using PID
- 8. Chapter 25 Condenser Control Logic using PIP
- 9. Change chart on network chapter

The MCS Commitment is to provide practical solutions for the industries needs and to be both a leader and partner in the effective use of microprocessor controls.

Micro Control Systems, Inc. 5580 Enterprise Parkway Fort Myers, Florida 33905 PH:(239) 694-0089 FAX:(239) 694-0031 www.mcscontrols.com

All information contained within this document is considered to be proprietary information of Micro Control Systems, Inc. No information or data from this document shall be published, used, reproduced, transmitted, or disclosed to others outside your organization without the prior expressed written consent of Micro Control Systems, Inc. This document and the information contained herein shall be treated as proprietary. Reasonable provisions shall be provided to ensure that this information remains proprietary by your employees, agents, and other personnel that may have access to this document. Copyright ©2022

# **Table of Contents**

| Chapter | - 1. MAGNUM Software                                                     | 9  |
|---------|--------------------------------------------------------------------------|----|
| 1.1.    | RTU Purpose                                                              | 9  |
| 1.2.    | Building a RTU Configuration File                                        | 10 |
| Chapter | - 2. Authorization Function                                              |    |
| 2.1.    | Authorization Function                                                   |    |
| Chanter | - 3. General Info Button                                                 |    |
| 3.1.    | The Occupied Indicators section:                                         |    |
| 3.2.    | The Warm Up option can be specified:                                     |    |
| 3.3.    | Warm Up Sequence of Operations:                                          |    |
| 3.4.    | Forced (on sensors)                                                      |    |
| 3.5.    | The Control ON section:                                                  |    |
| 3.6.    | Unit Sensors                                                             |    |
| 3.7.    | Demand Limit FLA %                                                       |    |
| 3.8.    | Demand Limit Steps                                                       |    |
| 3.9.    | Loss BMS Communication                                                   |    |
| 3.10.   | Setpoint Adjust Sensors                                                  |    |
| Chapter |                                                                          |    |
| 4.1.    | BUILDING PSI CONTROL:                                                    |    |
|         | .1 DIRECT CONTROL METHOD                                                 |    |
|         | .2 REVERSE CONTROL METHOD                                                |    |
| 4.1     |                                                                          |    |
| 4.2.    |                                                                          |    |
|         | .1 BASED ON O/A AIR DAMPER:                                              | 17 |
|         | .2 BASED ON CFM:                                                         |    |
| 4.3.    | SUPPLY FAN CONTROL                                                       |    |
| 4.4.    | OUTDOOR AIR DAMPER CONTROL                                               |    |
|         | .1 OUTDOOR AIR DAMPER CONTROL FOR 100% OUTSIDE AIR UNITS                 |    |
|         | .2 NON-OUTSIDE AIR UNIT USING:                                           |    |
|         | 4.4.2.1. ECONOMIZER - provides free cooling                              |    |
|         | 4.4.2.1.1. Economizer ON/OFF                                             | 21 |
| 44      | .3 C02 - INDOOR AIR QUALITY                                              |    |
| 4.4     |                                                                          |    |
| 4.5.    | Smoke & Fire Alarm Indicators and Smoke Purge:                           |    |
| 4.6.    | SINGLE ZONE VAV SUPPORT                                                  |    |
| 4.7.    | ENERGY RECOVERY WHEEL (ERW) WHEEL                                        |    |
| 4.7     | .1 The Energy Recovery Wheel (ERŴ) setup requires:                       |    |
|         | .2 Energy Recovery Wheel (ERW) control logic:                            |    |
| Chapter |                                                                          |    |
| 5.1.    | Selecting Cooling Info Button                                            |    |
| 5.2.    | Energy Efficient Compressor Staging                                      |    |
| 5.3.    | Expanded Compressor Rotation to Check for Maximum Run Time               |    |
| 5.4.    | Oil Pump Control Option                                                  |    |
| 5.4     |                                                                          |    |
| 5.5.    | FAST UNLOADING                                                           |    |
| 5.6.    | MCS-Magnum Oil Recovery Logic - Tandem Variable Speed & Fix Speed scroll |    |
|         | compressor                                                               |    |
| 5.6     | •                                                                        |    |
| 5.6     |                                                                          |    |
| 5.6     | •                                                                        |    |
| -       | 5.6.3.1. Oil Recovery Logic:                                             |    |
|         | 5.6.3.2. Balance Mode:                                                   |    |
|         | 5.6.3.3. The balance mode is stopped when:                               |    |
|         | 5.6.3.4. Boost Mode:                                                     |    |
| 5.7.    | Setpoint #139 Low Oil Level Safety                                       | 32 |

| 5.     | 7.1 Setpoint Descriptions Only                                 |    |
|--------|----------------------------------------------------------------|----|
| 5.8.   | UNLOAD DELAY- RECIP/VFD COMPRESSORS                            |    |
| 5.9.   | EMERGENCY STOP RELAY - CIRCUIT BASE                            |    |
| Chapte | r - 6. Dehumidification Section (Condenser Info):              |    |
| 6.1.   | 'Force X on (old way)' Specify compressor staging method       |    |
| 6.2.   |                                                                | 34 |
| 6.     | 2.1 Setpoints for Dehumid 'Stage On and Off by Control Sensor' |    |
| 6.3.   | Unit Sensors                                                   | 35 |
| Chapte | r - 7. Electric Heat For Reheat In Dehumidification            |    |
| 7.1.   | Heat pump Units                                                |    |
| Chapte | r - 8. Humidification Section (Condenser Info):                |    |
| 8.1.   | Type of Humidification                                         |    |
| 8.2.   | Control with Cooling                                           | 40 |
| 8.3.   | Humidification Control                                         | 40 |
| 8.4.   | Damper Control                                                 | 40 |
| 8.5.   | Control Sequence                                               | 40 |
| Chapte | r - 9. Select Heating Info (Not Heat Pump)                     | 41 |
| Chapte |                                                                |    |
| Chapte |                                                                |    |
| -      |                                                                |    |
| Chapte | r - 15. Direct Fire Capacity States                            |    |
| Chapte | r - 16. Direct Fire Stage Heating States                       |    |
| Chapte |                                                                |    |
| -      | PRE HEATING:                                                   |    |
|        | 7.1.1 MCS Configuration Setup                                  |    |
|        | 7.1.2 Setpoints                                                |    |
| 17.2.  | Control Zone                                                   |    |
| 17.3.  | Delay Timer                                                    |    |
| 17.4.  | AO Setting Adjustment                                          | 52 |
| 17.5.  | Pre-Heat Sequence of Operations                                | 52 |
| 17.6.  | Pre-Heat OFF                                                   | 52 |
| Chapte | r - 18. Split Manifold Heating                                 | 53 |
| Chapte | r - 19. Magnum Keypad And Display                              |    |
| 19.1.  | RTU Base Screen                                                |    |
| 19.2.  | RTU PRIMARY Heating                                            |    |
| 19.3.  | RTU AUXILIARY Heating                                          | 57 |
| 19.4.  | RTU Ventilation Info                                           | 57 |
| 19.5.  | RTU Ventilation Info                                           | 58 |
| Chapte | r - 20. Mcs Connect Displays                                   |    |
| 20.1.  | UNIT Tab:                                                      | 59 |
| 20.2.  | HEATING Tab:                                                   | 60 |
| 20.3.  | Cooling Tab:                                                   | 60 |
| Chapte | r - 21. RTU Operation Steps                                    | 61 |
| 21.1.  | At Power Up                                                    |    |
| 21.2.  | DETERMINE BUILDING MODE                                        |    |
| 21     | I.2.1 Determine Unit mode                                      | 61 |
|        | 21.2.1.1. Cooling Mode                                         |    |
|        | 21.2.1.2. Heating Mode                                         |    |
|        | 21.2.1.3. Vent Mode                                            |    |
|        | 21.2.1.4. Dehumidify Mode                                      |    |
|        | 21.2.1.5. Reheat Flush                                         |    |
|        | 21.2.1.6 Forced Reheat Flush                                   | 63 |

|         | 21.2.1.7. Flush for Fast Superheat Logic                         |    |
|---------|------------------------------------------------------------------|----|
| Chapter | - 22. RTU/Cooling Control States (Number)                        | 64 |
| 22.1.   | UNIT IN POWER UP (0)                                             |    |
| 22.2.   | POWER LOSS DELAY (1)                                             | 64 |
| 22.3.   | NO RUN-I/O LOST (2)                                              | 64 |
| 22.4.   | UNIT IN LOCKOUT (3)                                              | 64 |
| 22.5.   | UNIT IS OFF (4)                                                  | 64 |
| 22.6.   | UNIT IS HOLDING (5)                                              | 64 |
| 22.7.   | UNIT UNLOADING (6)                                               | 65 |
| 22.8.   | UNIT IS LOADING (7)                                              | 65 |
| 22.9.   | OFF-SMOKE ALARM (8)                                              | 65 |
| 22.10.  | RUN/STOP SW OFF (9)                                              | 65 |
| 22.11.  | SCHEDULED OFF (10)                                               | 65 |
| 22.12.  | OFF-NO FLOW (11)                                                 | 65 |
| 22.13.  | OFF-NO COND FLOW (12)                                            | 65 |
| 22.14.  | AMBIENT OFF (13)                                                 | 66 |
| 22.15.  | PROCRESS HEAT OFF (14)                                           | 66 |
| 22.16.  | UNIT IS UNLOADED (15)                                            | 66 |
| 22.17.  | UNIT IS LOADED (16)                                              | 66 |
| 22.18.  | RTU DEHUMID COOL (17)                                            | 66 |
| 22.19.  | CONOMIZER ONLY (18)                                              | 66 |
| 22.20.  | SWITCHING MODES (19)                                             | 66 |
| 22.21.  | UNIT SMOKE UNLDG (20)                                            | 66 |
| 22.22.  | UNIT OFF UNLDING (21)                                            | 66 |
| 22.23.  | UNIT DMD UNLDING (22)                                            | 66 |
| 22.24.  | UNIT HEAT UNLDING (23)                                           | 67 |
| 22.25.  | UNLDING RUN CMPS (24)                                            | 67 |
| 22.26.  | OPENING BY VLV (25)                                              | 67 |
| 22.27.  | CMP RAMPING UP (26)                                              | 67 |
| 22.28.  | CLOSING BYP VLV (27)                                             | 67 |
| 22.29.  | FACTORY STARTUP (28)                                             | 67 |
| 22.30.  | MAXIMUM RUN TIME (29)                                            | 67 |
| 22.31.  | RTU RUN NORMAL (30)                                              | 67 |
| 22.32.  | OFF-FIRE ALARM (31)                                              | 67 |
| 22.33.  | UNIT HEAT HLDG (32)                                              | 67 |
| Chapter | - 23. MAGNUM Alarms And Safeties                                 |    |
| -       | System Generated Alarms                                          |    |
| 23.2.   | User Initiated Alarms                                            |    |
| 23.3.   | Automatic Alarms                                                 |    |
| 23.4.   | Configuration Alarms                                             |    |
| 23.5.   | MCS I/O Network Alarms                                           |    |
| 23.6.   | CONTROLLING Sensor INPUT Alarms                                  |    |
| 23.7.   | Emergency Stop Alarm                                             |    |
| 23.8.   | Setpoint Safety Alarms                                           |    |
| 23.9.   | Sensor Inputs Used With Magnum Setpoint Safeties:                |    |
| 23.10.  | Setpoint Safeties                                                |    |
| 23.11.  | Freeze Protection (SAFETY IS ALWAYS CHECKED)                     | 71 |
| 23.12.  | No Flow Protection                                               |    |
|         |                                                                  |    |
|         | Low Differential Oil Pressure                                    |    |
|         | Low Suction Pressure                                             |    |
|         |                                                                  |    |
| 23.17.  |                                                                  |    |
|         | Low Discharge Pressure                                           |    |
|         | High Discharge Temperature (SAFETY IS ALWAYS CHECKED)            |    |
|         | High Motor Temperature or Motor Fault (SAFETY IS ALWAYS CHECKED) |    |
|         |                                                                  |    |

|        | . High Oil Temperature                                                                    |          |
|--------|-------------------------------------------------------------------------------------------|----------|
| 23.22  | . High Motor Amperage                                                                     | 72       |
| 23.23  | . Low Motor Amperage                                                                      | 72       |
|        | . No Compressor Proof                                                                     |          |
|        | . High Oil Seal Temperature (Screw Compressors only)                                      |          |
|        | . Dirty Oil Filter (Fixed Step Compressors only)                                          |          |
| 23.27  | . Low Discharge Superheat                                                                 | 72       |
| 23.28  | . Low Discharge Superheat                                                                 | 72       |
| Chapte | r - 24. RTU Safeties & Faults                                                             | 73       |
| 24.1.  | High Static Pressure                                                                      |          |
| 24.2.  | Low Static Pressure                                                                       | 73       |
| 24.3.  | Supply Fan VFD Fault                                                                      | 73       |
| 24.4.  | Exhaust Fan VFD Fault                                                                     | 73       |
| 24.5.  | Return Fan Fault                                                                          | 73       |
| 24.6.  | MOD Gas Alarm                                                                             | 73       |
| 24.7.  | No Ignition Alarm                                                                         | 73       |
| 24.8.  | SCR Heating Alarm                                                                         |          |
| 24.9.  | Clogged Filter Alarm                                                                      | 74       |
| 24.10  |                                                                                           |          |
| 24.11  |                                                                                           |          |
|        | Smoke Alarm                                                                               |          |
|        | . Fire Alarm                                                                              |          |
|        | . Smoke Purge Alarm                                                                       |          |
| Chapte | r - 25. Condenser Types Supported by the Magnum                                           | 75       |
| 25.1.  | •                                                                                         |          |
|        | 5.1.1 RO Step Condenser Cut In – Out Logic                                                |          |
|        | 5.1.2 RO Step Condenser with Variable Speed Fan                                           |          |
| 25     | 5.1.3 Condenser Control                                                                   |          |
|        | 25.1.3.1. Common Terms                                                                    |          |
|        | 25.1.3.2. Control Discharge Pressure Calculation                                          |          |
|        | <ul><li>25.1.3.3. Condenser Reset</li><li>25.1.3.4. Condenser Low Ambient</li></ul>       |          |
|        | 25.1.3.4.       Condenser Low Ambient         25.1.3.5.       Condenser Related Setpoints |          |
| 25.2.  | •                                                                                         |          |
|        | 5.2.1 No Condenser                                                                        |          |
|        | 5.2.2 RO Step Common                                                                      |          |
| 20     | 25.2.2.1. RO Step Common with a Fan AO and Condenser Faults                               |          |
| 25     | 5.2.3 RO Step Individual                                                                  |          |
|        | 5.2.4 RO Step Combined                                                                    |          |
|        | 5.2.5 Modulating                                                                          |          |
|        | 25.2.5.1. Modulating Common                                                               |          |
| 25     | 5.2.6 Modulating Step Common                                                              |          |
|        | 25.2.6.1. Modulating Individual                                                           |          |
| 25     | 5.2.7 RO Shared                                                                           |          |
| 25     | 5.2.8 Dual V8                                                                             | 87       |
|        | 5.2.9 Common VFD Fan w/Bypass                                                             |          |
|        | 5.2.10 Evaporative types of Condenser Control                                             |          |
|        | 5.2.11 RO Adaptive Bank– Air cooled Condenser Fan Control                                 |          |
| 25     | 5.2.12 RO Adaptive Common – Air Cooled Condenser Fan Control                              |          |
|        | 25.2.12.1. Adaptive Condenser Control Setpoints                                           |          |
|        | 25.2.12.2. Adaptive Control Logic                                                         |          |
|        | 25.2.12.3. Adaptive Rotation Logic                                                        |          |
|        | 25.2.12.4. Viewing on MCS-CONNECT and MCS-MAGNUM LCD KEYPAD                               |          |
|        | 25.2.12.4.1. MCS-Connect Display<br>25.2.12.4.2. MCS-MAGNUM LCD KEYPAD                    | 92<br>ია |
| Chart  |                                                                                           |          |
|        | r - 26. Condenser Logic using PID Control                                                 |          |
| 26.1.  | Setpoint Definitions used for Condenser PID Control Logic                                 |          |

| 26                   | 1.1.1 Recommended Setpoint Range (134A)                                   |  |
|----------------------|---------------------------------------------------------------------------|--|
| 26                   | .1.2 HVAC/RTU PID CONTROL DESCRIPTION                                     |  |
| 26                   | 1.3 Example: SETPOINT INTERACTIONS & DEFINATIONS                          |  |
|                      | .1.4 PID Modulating Individual                                            |  |
|                      | 1.5 PID Step Common                                                       |  |
|                      | PID CONTROL                                                               |  |
|                      | - 27. Electronic Expansion Valve Control                                  |  |
| 27.1.                |                                                                           |  |
|                      |                                                                           |  |
|                      | .1.1 EXV Control States                                                   |  |
|                      | .1.2 EXV Maximum Operating Pressure                                       |  |
|                      | 1.3 Tandem EXV Setup                                                      |  |
| 27                   | 1.4 Example: One Compressor with One Step and Tandem EXV's                |  |
|                      | 27.1.4.1. Example: Two Compressors with Four Steps and Tandem EXV's       |  |
| 27                   | .1.5 'Evaporator or Condenser Refrigerant Level Control                   |  |
|                      | 27.1.5.1. Minimum Refrigerant Level target (HVAC ONLY)                    |  |
|                      | 27.1.5.2. Evaporator Level Control                                        |  |
|                      | 27.1.5.3. Condenser Level Control                                         |  |
|                      | 1.6 EXV control methods for Step Loading Compressors                      |  |
| Chapter              | <sup>-</sup> - 28. EXV Control SSH, SSH2                                  |  |
| 28.1.                | Fast Suction Superheat (Fast SSH)                                         |  |
| 28.2.                | Fast Suction Superheat 2 (Fast SSH2)                                      |  |
| 28.3.                | Selecting Fast SSH or Fast SSH2 in MCS-Config                             |  |
| 28.4.                | Circuit Base                                                              |  |
| 28                   | .4.1 Selecting the 'EXV Control' tab you are prompted with the following: |  |
| 28                   | .4.2 Selection Options                                                    |  |
|                      | .4.3 Compressor EXV Results                                               |  |
| 28                   | .4.4 Subcooler EXV Results                                                |  |
| 28                   | .4.5 MCS EXV Factory Default Set Point                                    |  |
|                      | 28.4.5.1. Fast SSH2, Suction Superheat, Plate HX                          |  |
|                      | 28.4.5.2. Fast SSH2, Suction Superheat, DX Coil                           |  |
|                      | 28.4.5.3. Fast SSH, Suction Superheat, DX Barrel                          |  |
|                      | 28.4.5.4. Fast SSH2, Discharge Superheat, DX Barrel                       |  |
|                      | 28.4.5.5. Fast SSH, Suction Superheat, DX Barrel                          |  |
|                      | 28.4.5.6. Suct Spht, Suction Superheat, DX Barrel                         |  |
| 28.5.                |                                                                           |  |
|                      | .5.1 Set Point Adjustments                                                |  |
|                      | .5.2 Low Suction Multiplier-SP 13                                         |  |
|                      | 28.5.2.1. Low Superheat Adjustment-SP 15                                  |  |
|                      | 28.5.2.2. EXV Startup Time-SP 20                                          |  |
|                      | 28.5.2.3. EXV Compressor Start Delay-SP 20                                |  |
|                      | 28.5.2.4. EXV Target & EXV Fast Zone-SP 9                                 |  |
| 28.6.                | Fast SSH States                                                           |  |
|                      | 0.6.1 FAST SSH2 State Format                                              |  |
|                      |                                                                           |  |
| <b>Chapter</b> 29.1. | MCS PID REQUIREMENTS                                                      |  |
| 29.1.                | Calculations for the adjustment to EXV valve                              |  |
| 29.2.<br>29.3.       | EXV PID Firmware                                                          |  |
|                      |                                                                           |  |
| 29.4.<br>29.5.       | MCS PID REQUIREMENTS<br>Selecting PID in MCS-CONFIG                       |  |
|                      |                                                                           |  |
| 29.6.                | Circuit Base                                                              |  |
| 29.7.                | Selecting the 'EXV Control' tab you are prompted with the following:      |  |
| 29.8.                | Selection Options                                                         |  |
| 29.9.                | Compressor EXV Results                                                    |  |
| 29.10.               |                                                                           |  |
| 29.11.               |                                                                           |  |
|                      | .11.1 Subcooler EXV Results                                               |  |
| 29.12.               | EXV PID Ki Delay Timer and Ki Accumulator                                 |  |

| 29.13.         | Logic to Determine which K Multipliers to Use                                                                       | 126 |
|----------------|---------------------------------------------------------------------------------------------------------------------|-----|
|                | 29.13.1.1. Switching to Fast K multipliers is based on:                                                             |     |
|                | 29.13.1.2. Switching to Slow K multipliers is based on:                                                             | 126 |
|                | 13.1 Rate of Change Moving too Fast                                                                                 |     |
|                | 13.2 Rate of Change - Moving Slow Enough                                                                            |     |
|                | MCS-Connect Evaporator EXV PID Status                                                                               |     |
|                | Allowing an Adjustments to the EXV Valve                                                                            |     |
| Chapter        | - 30. EXV Level Control using PID                                                                                   |     |
| 30.1.          | Setting up EXV Level Control                                                                                        |     |
|                | 1.1 Setting up EXV Level Control – User Defined                                                                     |     |
|                | 1.2 Circuit Base Setup                                                                                              |     |
|                | 1.3 Setup using EXV CONTROL WIZARD                                                                                  |     |
| 30             | 1.4 Low Discharge Superheat EXV Target Adjust Logic                                                                 |     |
|                | 30.1.4.1. The Low Discharge Superheat logic:                                                                        |     |
|                | - 31. Analog Output Control using PID                                                                               |     |
| Chapter        | - 32. Capacity Control Logic Using PID                                                                              |     |
|                | - 33. BMS Communication Protocols                                                                                   |     |
| 33.1.          | MCS-Magnum to BMS Connections                                                                                       |     |
| 33.2.          | Sensor Input Points                                                                                                 |     |
| 33.3.          | Relay Output Points                                                                                                 | 140 |
| 33.4.          | Setpoints                                                                                                           | 141 |
| 33.5.          | Chiller/Compressor States                                                                                           | 141 |
| 33.6.          | Chiller/Compressor Points                                                                                           |     |
| 33.7.          | Unit Alarms                                                                                                         |     |
| 33.8.          | Compressor Alarms                                                                                                   |     |
| 33.9.          | Network inputs to MCS-Magnum                                                                                        |     |
|                | MCS-MAGNUM BMS PROTOCOLS                                                                                            |     |
| 33.            | 10.1 BACNET OVER IP PROTOCOL                                                                                        |     |
|                | 10.2 ETHERNET NETWORK PROTOCOL                                                                                      |     |
|                | 10.3 MODBUS RTU PROTOCOL                                                                                            |     |
|                | PROTOCOLS USING MCS-BMS-GATEWAY                                                                                     |     |
|                | 11.1 MODBUS TCP/IP PROTOCOL                                                                                         |     |
|                | PROTOCOLS USING MCS-BMS-GATEWAY                                                                                     |     |
| -              | - 34. Network Protocols                                                                                             |     |
| 34.1.          | Protocols MCS controllers support:                                                                                  |     |
| 34.2.          | Magnum USING RS-485                                                                                                 |     |
|                |                                                                                                                     |     |
| 34.4.          | EXAMPLE NETWORK                                                                                                     |     |
|                | <ul><li>4.1 Standalone Magnum</li><li>4.2 MULTIPLE Magnum Industrial Control Panels</li></ul>                       |     |
| 34.5.          | MULTIPLE Magnum BMS RS485 WIRING DIAGRAM                                                                            |     |
|                | -                                                                                                                   |     |
| Chapter        |                                                                                                                     |     |
| 35.1.          | Setup the Modbus from MCS-Config's Magnum Setup Screen(see below):                                                  |     |
| 35.2.          | From MCS-CONNECT's Service Window RS485 tab (see below):                                                            |     |
| 35.3.<br>35.4  | From Magnum LCD/Keypad(see below):<br>In MCS-CONFIG you can see & print a list of the Modbus Registers (see below): |     |
| 35.4.<br>35.5. | Modbus Fault Sensors                                                                                                |     |
|                |                                                                                                                     |     |
| Chapter        | •                                                                                                                   |     |
| Chapter        |                                                                                                                     |     |
| 37.1.          | SETPOINT Types                                                                                                      |     |
| Chapter        | - 38. RTU Setpoints                                                                                                 | 171 |

# Chapter - 1. MAGNUM Software

#### Magnum RTUM software joins the Magnum family of software:

| HVAC MAG | - | Chillers with Screws, Reciprocating & Scroll Compressors  |
|----------|---|-----------------------------------------------------------|
| CENT MAG | - | Chillers with Centrifugal Compressors                     |
| LWC MAG  | - | Controls multiple Chillers, Pumps, Modulating Valves      |
| REFR MAG | - | Control Refrigeration Systems                             |
| RTU MAG  | - | Control for Roof Top Units                                |
| CPM MAG  | - | Chiller Plant Manager controlled via RS485 communications |
| MICROMAG | - | Controls RTU's & Chillers                                 |

All Magnum software is supported by a common MCS-CONNECT (version 18.00 or greater) and MCS-CONFIG (version 18.00 or greater) set of software.

#### 1.1. RTU Purpose

The purpose of the RTU software is to provide flexible control to roof top units that provide heating, cooling and/or dehumidification to a building. In addition the necessary ventilation control of fans and dampers to insure proper air quality and building pressure is provided.

This software has been build using the HVAC control logic as its base. Therefore, all options and capabilities that address the cooling function have been incorporated in the RTU software. The Magnum RTU Manual is to be used as reference on these subjects.

### **1.2. Building a RTU Configuration File**

MCS-CONFIG (version 17.00 or greater) is required to edit a RTU configuration file. The difference between this type and the HVAC is in the button that enables the RTU data to be selected.

| MCS-Config 17.00k | ( - rtu 1 field ) | 3-12-14 RevB | l.cfg |         |              |            |           |      |          |            |   |
|-------------------|-------------------|--------------|-------|---------|--------------|------------|-----------|------|----------|------------|---|
| File Edit Window  | Help              |              |       |         |              |            |           |      |          |            |   |
| 🕞 😫 🎒 System      | Setup R           | Os Sis       | AOs   | MAG RTU | Cilcuit Base | Circuit SI | Setpoints | Auth | Schedule | BMS Points |   |
|                   |                   |              |       |         |              |            |           |      |          |            | _ |

By selecting the MAG RTU button the following screens can be accessed:

| Magnum RTU Information Screen                                                                                                                                                                         |                                    |                                     |                           |                               |                                            |                                |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------|-------------------------------|--------------------------------------------|--------------------------------|--|--|
| Information Panel Selector                                                                                                                                                                            |                                    |                                     |                           |                               |                                            |                                |  |  |
| General Info                                                                                                                                                                                          | Ventilation Info                   | Cooling I                           | Info OC                   | Condenser Info                | Heating Info                               | C Lockout Info                 |  |  |
| Constant Volume     O Variable Air Volume |                                    |                                     |                           |                               |                                            |                                |  |  |
| Constant Volume                                                                                                                                                                                       |                                    |                                     | neral Informat            | 2                             | 0 100% 0                                   | atside All Makeup              |  |  |
| Unit Control Unit                                                                                                                                                                                     | Indicators                         | Unit Pov                            | ver                       | Occupied Indicator            | S Warm Up/Pre-Cool                         | Forced                         |  |  |
| Run/Stop Switch                                                                                                                                                                                       | aming Relay<br>Ised <b>v</b>       | ise Loss                            |                           | Use Operating<br>Schedule As: | Required?     Yes No     Warm Up Indicator | Forced Cooling                 |  |  |
|                                                                                                                                                                                                       | larm Relay PhaseL                  |                                     |                           | Night Setback<br>On/Off       | Not Used                                   | Not Used -                     |  |  |
| Network Run/Stop                                                                                                                                                                                      | nit ON/OFF RO Not Use              | nit KW<br>∘d <b>▼</b>               |                           | Occupied SW<br>Not Used       | Forced Warm Up<br>Not Used                 | Forced Heating<br>Not Used     |  |  |
| Emergency Stop                                                                                                                                                                                        | Status Relay Un                    | t Amps<br>d                         |                           | Override SW<br>Not Used       | Forced Pre-Cool                            | Forced Dehumid<br>Not Used     |  |  |
|                                                                                                                                                                                                       | Return Supply Zor                  | ne Ambient                          |                           | Unit Sensors                  |                                            | Demand Sensors                 |  |  |
| Fan Only Mode:<br>Switch to Cooling/Heating                                                                                                                                                           |                                    | 0                                   | Supply Temp.              | Outside Temp.                 | Return Temp.<br>R/A Temp 🔻                 |                                |  |  |
| Switch to Dehumid                                                                                                                                                                                     | • • •                              | ۰                                   | Supply Humidity           | Outside Humidity              | Return Humidity                            | Demand Limit FLA %             |  |  |
| Cooling Stage Control On                                                                                                                                                                              | 0 0 0                              | 0                                   | Not Used                  |                               | R/A Humid 💌                                | Not Used                       |  |  |
| Heating Stage Control On                                                                                                                                                                              |                                    | 0                                   | Zone Humidity<br>Not Used | Mixed Air<br>Not Used 💌       | Clogged Filter                             | Demand Limit Steps<br>Not Used |  |  |
|                                                                                                                                                                                                       | S Communication<br>Stop • N        | o Change                            | Zone Temp.<br>Not Used    | •                             | Flow Switch                                |                                |  |  |
|                                                                                                                                                                                                       | Cooling Enable                     | leat Target                         | Heat Enable               | Dehumid Target                | Dehumid Enable<br>Not Used                 | Reheat Target                  |  |  |
| Temp Control Sensor<br>Not Used                                                                                                                                                                       | Vestibule<br>Fan Relay<br>Not Used | Control<br>Cooling Rela<br>Not Used | ay Heat<br>Not Used       | ing Relay                     |                                            |                                |  |  |

The above screen provides the base options and pointers for the RTU software.

## **Chapter - 2.** Authorization Function

#### **2.1.** Authorization Function

The authorization code is a special four-character code that enables access to the Magnum controller.

The code may consist of any valid alpha/numeric characters if the system is being accessed through MCS-Connect, however, the code must be numeric with values between 1 and 8 if it is to be entered through the Keypad/Display. Each Magnum can have up to 10 different authorization codes, with four levels of authorization which provide differing levels of functionality. The authorization code and the associated level cannot be viewed or changed through the Keypad/Display or MCS-Connect, but only when the configuration file is opened in MCS-Config. The authorization codes should be protected and remain confidential, or unauthorized personnel may gain access to the system and perhaps cause irreparable damage.

| FUNCTION                            | VIEW | USER | SERVICE | SUPERVISOR | FACTORY | ADMIN |
|-------------------------------------|------|------|---------|------------|---------|-------|
| Sensor offsets                      | NO   | NO   | YES     | YES        | YES     | YES   |
| Sensor diagnostics                  | NO   | NO   | YES     | YES        | YES     | YES   |
| Clear alarm history                 | NO   | NO   | NO      | NO         | NO      | YES   |
| Clear point information             | NO   | NO   | NO      | NO         | NO      | YES   |
| Date and time set                   | NO   | YES  | YES     | YES        | YES     | YES   |
| Day of week set                     | NO   | YES  | YES     | YES        | YES     | YES   |
| Change No Flow Lockout or shut down | NO   | NO   | NO      | NO         | YES     | YES   |
| Change rotate Yes or No             | NO   | NO   | NO      | NO         | YES     | YES   |
| Change Manual/Auto settings         | NO   | NO   | NO      | YES        | YES     | YES   |
| Change setpoint values              | NO   | *    | *       | *          | YES     | YES   |
| Change operating schedules          | NO   | YES  | YES     | YES        | YES     | YES   |
| Change holiday dates                | NO   | YES  | YES     | YES        | YES     | YES   |
| Lockout Reset                       | NO   | **   | **      | **         | YES     | YES   |
| Change RS485 network settings       | NO   | NO   | YES     | YES        | YES     | YES   |
| Change Ethernet network settings    | NO   | NO   | YES     | YES        | YES     | YES   |
| Adjust Keypad/Display contrast      | YES  | YES  | YES     | YES        | YES     | YES   |
| Transmit Software                   | NO   | NO   | YES     | YES        | YES     | YES   |
| Transmit/Receive Configuration      | NO   | NO   | YES     | YES        | YES     | YES   |

From the Keypad/Display the following changes can be made based upon the authorization level:

\* Setpoints may have individual authorization levels; you must have the proper authorization to view or edit them.

\*\*See the Setup screen of the configuration for authorization level(s) that are allowed unlimited resets per day. Authorization levels below 'Auth Level Bypass' are allowed only a limited number of resets. Authorization levels at and above 'Auth Level Bypass' are allowed unlimited lockout resets.

\*\*\*Firmware Version 17.62M, 'Change RS485 network settings - SERVICE or greater.'

#### To get authorized through the Keypad/Display do the following:

1. Press 'Menu'

\*\*\*

2. Using  $\uparrow \downarrow$ ,  $\rightarrow$ , or  $\leftarrow$  keys, move cursor to 'Passwords'

| To get authorized throu | gh MCS-Connect do | the following: |
|-------------------------|-------------------|----------------|
|-------------------------|-------------------|----------------|

| _                      | _                                                                                              | _             |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| orkspace V             | /iew Button B                                                                                  | Bar Time Help |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Sc                                                                                             | can           | Graph                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                | Transmit (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cfg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Receive Cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g View Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Diagnostic Save                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 - HFATE              | DIIMD 6-                                                                                       | DI ANT AHII3  | 5 - TR ROOM                                                                                                                                                                                                                   | 7 - DI ANT AHII1                                                                                                                                                                                                                                                                                                                                                               | 3 - D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 - LID VAVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 - STI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                |               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Installed Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                                                                                |               | ~                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit Senal #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                |               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/13/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                                                |               |                                                                                                                                                                                                                               | MCS                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/05/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01                     | 11492                                                                                          | PLA           | NT AHU3                                                                                                                                                                                                                       | MCS                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AAON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB-HVAC 14.02F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01/07/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01                     | 10462                                                                                          | TE            | R ROOM                                                                                                                                                                                                                        | MicroCtrlSystem                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cool/Heat/OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/13/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01                     | 12938                                                                                          | PLA           | NT AHU1                                                                                                                                                                                                                       | MCS                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB-HVAC 14.05U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01/07/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00                     | 02210                                                                                          | DOV           | WN VAVS                                                                                                                                                                                                                       | MicroCtrlSys                                                                                                                                                                                                                                                                                                                                                                   | em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14,15,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCL HVAC 09.10L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06/01/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                                                | U             | P VAVS                                                                                                                                                                                                                        | MicroCtrlSystem                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.10.11.13A.13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JAT HVAC 09.10Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08/03/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 192.168.10.4 (11) 0130 |                                                                                                |               | STI                                                                                                                                                                                                                           | MicroCtrlSys                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /Heat/OA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06/04/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                                                                                |               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                                                                                                |               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                |               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | 1 - HEAT<br>H\<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | S             | HW Serial #         CC           001088         OFF           008038         HE           011492         PLA           010462         TI           012938         PLA           002210         DOU           001624         U | Scan         Graph           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM           HW Serial #         Cfg Name           001088         OFFICE AHU           008038         HEATPUMP           011492         PLANT AHU3           010462         TR ROOM           012938         PLANT AHU1           002210         DOWN VAVS           001624         UP VAVS | Scan         Graph           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM         7 - PLANT AHU1           HW Serial #         Cfg Name         Company Nar           001088         OFFICE AHU         MicroCtrlSyst           08038         HEATPUMP         MCS           011492         PLANT AHU3         MCS           010462         TR ROOM         MicroCtrlSyst           012938         PLANT AHU1         MCS           002210         DOWN VAVS         MicroCtrlSyst           01624         UP VAVS         MicroCtrlSyst | Scan         Graph         Transmit           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM         7 - PLANT AHU1         3 - DC           HW Serial #         Clg Name         Company Name           001088         OFFICE AHU         MicroCtrlSystem           001492         PLANT AHU3         MCS           011492         PLANT AHU3         MCS           012938         PLANT AHU1         MCS           002210         DOWN VAVS         MicroCtrlSystem           01624         UP VAVS         MicroCtrlSystem | Scan         Graph         Transmit Cfg           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM         7 - PLANT AHU1         3 - DOWN VAVS           HW Serial #         Cfg Name         Company Name         Un           001088         OFFICE AHU         MicroCtrlSystem         Cool           010802         PLANT AHU3         MCS         L1           011492         PLANT AHU3         MCS         MC           010462         TR ROOM         MicroCtrlSystem         Cool           012938         PLANT AHU1         MCS         12           002210         DOWN VAVS         MicroCtrlSystem         12           001624         UP VAVS         MicroCtrlSystem         82,10,1 | Scan         Graph         Transmit Cfg         Receive Cf           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM         7 - PLANT AHU1         3 - DOWN VAVS         4 - UP VAVS           HW Serial #         Cfg Name         Company Name         Unit Model #           001088         OFFICE AHU         MicroCtrlSystem         Cool/Heat/OA           008038         HEATPUMP         MCCS         LL 125 TON           011492         PLANT AHU3         MCCS         AAON           010462         TR ROOM         MicroCtrlSystem         Cool/Heat/OA           012938         PLANT AHU1         MCS         AAON           002210         DOWN VAVS         MicroCtrlSystem         12,14,15,16           001624         UP VAVS         MicroCtrlSystem         8,10,11,13,138 | Scan         Graph         Transmit Cfg         Receive Cfg         View Only           1 - HEATPUMP         6 - PLANT AHU3         5 - TR ROOM         7 - PLANT AHU1         3 - DOWN VAVS         4 - UP VAVS         11 - STI           HW Serial #         Cfg Name         Company Name         Unit Model #         Unit Serial #           001088         OFFICE AHU         MicroCtrlSystem         Cool/Heat/OA         000038           011492         PLANT AHU3         MCS         AAON         JB-HVAC 14.02F           010462         TR ROOM         MicroCtrlSystem         Cool/Heat/OA           012938         PLANT AHU1         MCS         AAON         JB-HVAC 14.05U           002210         DOWN VAVS         MicroCtrlSystem         12,14,15,16         BCL HVAC 09.10L           001624         UP VAVS         MicroCtrlSystem         12,14,13,138         JAT HVAC 09.10Q |

1. Click **View Only** on desired Magnum in the Site Information screen.

- 2. Click button.
- 3. Enter the 4 digit code into the pop-up box and click ok (or press the enter key).

4. Depending on the authorization level, the button will change to one of the following displays, indicating if the code was accepted or not.

| View Only | User | Service | Factory | Supervisor |  |
|-----------|------|---------|---------|------------|--|
|-----------|------|---------|---------|------------|--|

## Chapter - 3. General Info Button

The sections for Unit Control, Unit Indicators, Unit Power, Unit Sensors, and Demand Sensors will provide pointers for the various cells. These are standard drop down windows that allow the selection of the sensor inputs or relay outputs.

#### 3.1. The Occupied Indicators section:

Provides information as to the status of the building; occupied or unoccupied.

Occupied can be indicated by a schedule being true or by the Occupied SW being on. This can be a digital type or input from a BMS.

If unoccupied all setpoints are adjusted with their night setback values, refer to the section on setpoints. The unoccupied can be over ridden with the Override SW. This will enable the system to operate as occupied for a given period of time, setpoint #118.

Occupied indicators section under general info in the MAG RTU screen.

-Use Operating Schedule As: Select ON/OFF

-Occupied SW: Set up an occupied SI as digital and select it here

-Override SW: Set up an override SI as digital and select it here

#### 3.2. The Warm Up option can be specified:

A warm up can be initiated by either a schedule to indicate occupied or unoccupied and prior to moving to occupied mode the system will provide heat to the building to enable a warm up period or by a sensor input selected by the Forced Warm Up cell. This option has not been specified or implemented.

-Warm Up Required: Yes

-Warm Up Indicator: Set up an RO and call it InWarmUp and select it here

-Forced Warm Up: Not used

Setpoint #190 Set up (if inactive warm up will be skipped)

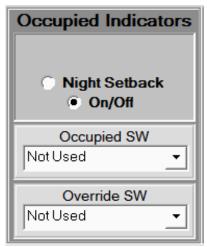
-Value: Maximum time in warm up

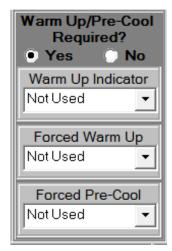
-Select Value: Minutes

-Type of Setpoint: Target

-High Zone: Cooling target

-Low Zone: Return target


-Night Setback: Heating target


#### **3.3. Warm Up Sequence of Operations:**

Only one warm up can occur per calendar day. When the unit enters occupied mode for the first time that day the RO "InWarmUp" will turn on letting us know the system is in warm up and the building mode will say warm up. Control will be on whatever is selected in the MAG RTU screen under the general info section. When the unit enters warm up it will go into heating if the return air temp is below the value that is in the Low Zone cell of setpoint #190. Setpoint #163 will then be

reset to the value that is in the Night Setback cell for setpoint #190. When the return air temp reaches the value that is in the Low Zone cell for setpoint #190 plus the value that is in the High Zone cell for setpoint #163 the unit will exit warm up and go into occupied mode and run as needed or if the maximum time in warm up has been met.

In warm up the unit will go into cooling if the return air temp is above the value that is in the High Zone cell





for setpoint #190. Setpoint #1 will not be reset. When the return air temp reaches the value that is in the High Zone cell for setpoint #190 minus the value of setpoint #3 the unit will exit warm up and go into occupied mode and run as needed or if the maximum time in warm up has been met.

#### 3.4. Forced (on sensors)

The purpose of these sensors if used is to force the unit into cooling or heating mode. The type of sensor can be digital, user logic or provided by a BMS; when it is on the appropriate mode will be entered. This removes the control from the ventilation mode control sensor to determine when the cooling or heating mode will be entered.

The Forced Dehumidification sensor has not been implemented at this time.

#### 3.5. The Control ON section:

This indicates the sensor that will be used as controlling sensors in the various modes.

The sensor indicated for the Ventilation Mode control will determine which mode is enabled.

In the example when the zone temperature is above setpoint #218 or if the Forced Cooling is used and it is on, Cooling Mode will be enabled. The RTU state will be changed to COOLING, and the Supply Temperature will be used to control the cooling steps. Once the system is in the Cooling Mode it will remain in this mode until the temperature drops below the value of setpoint #218 minus its Low Zone offset.

|                           | Return | Supply | Zone | Ambient |
|---------------------------|--------|--------|------|---------|
| Fan Only Mode:            |        |        |      |         |
| Switch to Cooling/Heating | ng 🖲   | 0      | 0    | 0       |
| Switch to Dehumid         | ۲      | 0      | 0    | 0       |
| Cooling Stage Control C   | )n 🔿   | ۲      | C    | 0       |
| Heating Stage Control C   | Dn 🔿   | ۲      | C    | C       |

In the example when the zone temperature

is below setpoint #219 or if the Forced Heating is used and it is on. Heating Mode will be enabled. The RTU state will be changed to HEATING, and the Zone Temperature will be used to control the heating steps. Once the system is in the Heating Mode it will remain in this mode until the temperature rises above the value of setpoint #219 plus its High Zone offset.

If neither cooling nor heating is required the RTU will be Ventilation Only. From this mode the system can enter a dehumidification mode if the humidity is greater than setpoint #220 or if the Forced Dehumidifying is used and it is on. If the system is moving from the cooling mode to the ventilation only mode and dehumidification is required, the system will not turn off any cooling stages that have been turned on.

#### 3.6. Unit Sensors

The set of sensors for Supply, Ambient, Return and Zone sensors are used in the control logic as indicated in the Control Mode On section as shown above.

Flow Switch if used, this digital input must indicate that there is flow or the unit will be turned off due to no flow.

| Unit Sensors                |                              |                              |  |  |  |  |  |  |  |
|-----------------------------|------------------------------|------------------------------|--|--|--|--|--|--|--|
| Supply Temp.                | Outside Temp.                | Return Temp.                 |  |  |  |  |  |  |  |
| Supply Humidity<br>Not Used | Outside Humidity<br>Not Used | Return Humidity<br>Not Used  |  |  |  |  |  |  |  |
| Zone Humidity<br>Not Used   | Mixed Air<br>Not Used        | Clogged Filter<br>DrtyFilter |  |  |  |  |  |  |  |
| Zone Temp.<br>Not Used      |                              | Flow Switch<br>AIR FLOW      |  |  |  |  |  |  |  |



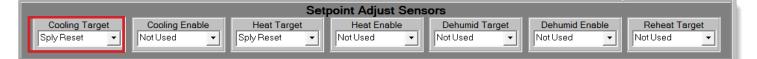
#### **3.7. Demand Limit FLA %**

A sensor input can be used to limit how far the compressor can load based on FLA%. Commonly used with infinite capacity screw compressors and Centrifugal compressors...

#### **3.8. Demand Limit Steps**

A sensor input can be used to limit the amount of steps of capacity the unit can load to Typically used with On/Off scrolls or reciprocating compressors with unloaders.

#### 3.9. Loss BMS Communication


On a loss of communication to the BMS for more than 10 minutes, the controller will default to

RUN, STOP or NO CHANGE (if running continue to run or off leave off).

|     | Lost BMS Commun | ication     |
|-----|-----------------|-------------|
| Run | Stop            | 🔿 No Change |
|     |                 | ,           |

#### **3.10. Setpoint Adjust Sensors**

Gives the ability to override a setpoint. This can be used to increase or decrease a temperature range without the necessity of adjusting a thermostat or can be an adjustment initiated from a BMS control.

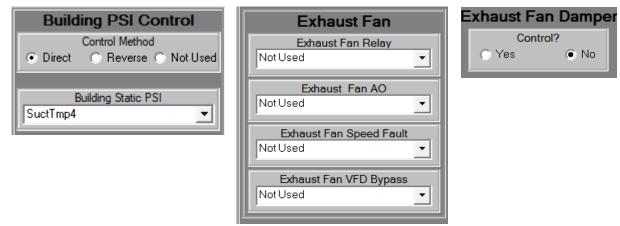


Example:

In the screen above the Cooling Target has a 'Sply Reset' sensor which has been hardwired to the unit. The sensor has been setup as 'TRGRST' and will reset the target value set up in setpoint #1 'CoolSply Trgt'.

|    | SI Setting 1-9 | 1-9   | Sply   | Reset |   | TR | GTRST |   |   |        |          |
|----|----------------|-------|--------|-------|---|----|-------|---|---|--------|----------|
|    | Setpoint #21   | TARGE | T RESE | Г     |   |    |       |   |   |        |          |
| 21 | TARGET RESET   | 5     | 0      | 10    | 1 | 0  | 0     | 0 | 0 | Active | <br>TEMP |

| ĺ          | Demand Sensors                 |
|------------|--------------------------------|
| •          |                                |
| <b>)</b> . | Demand Limit FLA %             |
|            | Demand Limit Steps<br>Not Used |


## **Chapter - 4.** Information Panel - Ventilation Info

This section provides the Ventilation options that are using: Sensors inputs, Relay outputs and Analog outputs to control Exhaust Fan Damper, Outside Air Damper.

#### 4.1. BUILDING PSI CONTROL:

#### 4.1.1 DIRECT CONTROL METHOD

The following screens will appear. If the building pressure is high, setpoint #197, the speed of the exhaust fan will be increased.



#### 4.1.2 REVERSE CONTROL METHOD

If the building pressure is low, setpoint #197, the outside air damper will be opened and the speed of the supply fan will be increased. The Exhaust Fan and Exhaust Fan Damper sections will not be displayed.

| Building PSI Control |
|----------------------|
| Control Method       |
| Building Static PSI  |
|                      |

#### 4.1.3 'NOT USED' CONTROL METHOD

The Exhaust Fan and Exhaust Fan Damper sections will not be displayed.

| Building PSI Control |                     |  |  |  |  |  |
|----------------------|---------------------|--|--|--|--|--|
| Control Method       |                     |  |  |  |  |  |
| O Direct             | 🔿 Reverse 💿 NotUsed |  |  |  |  |  |

#### 4.2. RETURN FAN CONTROL

#### 4.2.1 BASED ON O/A AIR DAMPER:

The speed of the return fan will be based upon the outside air damper opening. If the outside air damper is at 75% then the return fan will be at 25%. The exhaust fan will also affect the speed as it will be reduced proportionately based upon the exhaust fan speed.

#### 4.2.2 BASED ON CFM:

This method will be active if both the Supply & Return Fan CFM indexes are setup. This method uses a target that is developed by subtracting the value in setpoint #195 from the Supply Fan CFM value. Setpoint #195 can be modified by a BMS thus providing a floating target. The high & low zone cell values of this setpoint are used to develop the target zone. The Return Fan's VFD will be modulated to keep the Return Fan's CFM within the target zone. Setpoint #196 contains the adjustment values to modulate the Return FAN's VFD.

#### 4.3. SUPPLY FAN CONTROL

The supply fan control options are:

- Not Used: No supply fan control exists.
- **Single Zone:** Not defined or implemented at this time.
- Always On: When the system is occupied the supply fan will always be on.
- **Cycle:** The supply fan will be turned on only if the system is not in Ventilation Only mode.

The supply has a pre and post delay time, setpoint #108. Also the system will not enable any cooling or heating stages to be turned on until the supply fan has been on for a period of time, setpoint #108.

These delays insure that there is air movement and any latent hot or cold air has begun to circulate.

| Suppl                     | Supply Fan                |  |  |  |  |  |  |
|---------------------------|---------------------------|--|--|--|--|--|--|
| Run                       | Mode                      |  |  |  |  |  |  |
| 🔿 Not Used                | VAV/CAV                   |  |  |  |  |  |  |
| Occu                      | ıpied                     |  |  |  |  |  |  |
| Always On                 | 🔿 Cycle                   |  |  |  |  |  |  |
| Unoco                     | cupied                    |  |  |  |  |  |  |
| Always On                 | 🔿 Cycle                   |  |  |  |  |  |  |
| Static D                  | Juct PSI                  |  |  |  |  |  |  |
| DuctStatic                | •                         |  |  |  |  |  |  |
| Supply Fan Relay #1       | Supply Fan Relay #2       |  |  |  |  |  |  |
| SPLY FAN -                | Not Used                  |  |  |  |  |  |  |
| Supply Fan AO #1          | Supply Fan AO #2          |  |  |  |  |  |  |
| SPLY FAN%                 | Not Used 🔹                |  |  |  |  |  |  |
| Supply Fan Speed Fault #1 | Supply Fan Speed Fault #2 |  |  |  |  |  |  |
| Not Used -                | Not Used                  |  |  |  |  |  |  |
| Supply Fan VFD Bypass #1  | Supply Fan VFD Bypass #2  |  |  |  |  |  |  |
| Not Used 🔹                | Not Used 🔹                |  |  |  |  |  |  |
|                           |                           |  |  |  |  |  |  |

#### Return Fan Return Fan Relay Not Used Ŧ Return Fan AO Not Used • Return Fan VFD Bypass Not Used • **Return Fan Fault** Not Used Ŧ Speed Target SI Not Used Ŧ Speed Control SI Not Used •

#### 4.4. OUTDOOR AIR DAMPER CONTROL

The Outdoor Air Damper performs various functions:

CONTROL FOR 100% OUTSIDE AIR UNITS

#### • NON-OUTSIDE AIR UNIT USING:

- 1. Economizer Free Cooling
- 2. C02 Indoor Air Quality
- 3. Building CFM
- 1. Provides free cooling while functioning as an economizer. Refer to setpoint #119 through #126 for settings. As an economizer the damper will be modulated to provide free cooling prior to any mechanical cooling steps being activated. This control is the same as documented in Magnum Version 8 Manual; refer to section "Outside Air Economizer/Fluid Cooler with Analog Output Control.
- 2. Provides a minimum amount of outside air under normal operating conditions, refer to setpoint #121.
- 3. Ensure in-door air quality based upon the CO2 level; refer to setpoint #131, by maintaining a minimum opening if high CO2 exists.
- 4. Provide air flow based upon set point #127 by maintain a minimum opening to keep the flow with in it control zone.
- 5. Close economizer based on Low Ambient (Setpoint #192).
- 6. Note items 2, 3, & 4 provide a minimal opening for the damper.

#### 4.4.1 OUTDOOR AIR DAMPER CONTROL FOR 100% OUTSIDE AIR UNITS

#### Warning – This feature is supported in MCS-Magnum firmware version 17.72B2 and above.

This feature is enable by selection 100% Outside Air Makeup option(Red Box) in MCS-Config's Mag RTU screen. See below screen clip from MCS-Config:

| Magnum RTU Information Screen                                                                 |                                                                                                                  |                          |                                                   |  |                                 |                         |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|--|---------------------------------|-------------------------|--|--|--|
| Information Panel Selector                                                                    |                                                                                                                  |                          |                                                   |  |                                 |                         |  |  |  |
| General Info ○ Ventilation Info ○ Cooling Info ○ Condenser Info ○ Heating Info ○ Lockout Info |                                                                                                                  |                          |                                                   |  |                                 |                         |  |  |  |
| Constant Volum                                                                                | Unit Type<br>C Constant Volume C Variable Air Volume C Variable Air Volume Single Zone C 100% Outside Alr Makeup |                          |                                                   |  |                                 |                         |  |  |  |
|                                                                                               |                                                                                                                  | General I                | nformation                                        |  |                                 |                         |  |  |  |
| Unit Control                                                                                  | Unit Indicators<br>Waming Relay                                                                                  | Unit Power               | Occupied Indicat                                  |  | Up/Pre-Cool<br>equired?<br>s No | Forced                  |  |  |  |
| Run/Stop Switch                                                                               |                                                                                                                  | Phase Loss<br>Not Used 💌 | <ul> <li>Night Setback</li> <li>On/Off</li> </ul> |  |                                 | Forced Cooling Not Used |  |  |  |

 There are two options for OA Damper output. The output type is selected by the control method(Red Box), AO (Analog output) or Fixed (Relay Output). If AO type is selected, then Outside Air Damper AO(Yellow Box) points to the analog output for the OA Damper actuator. If Fixed type is selected, then the Outside Air Damper Relay(Blue Box) points the relay output to open the OA Damper. See below screen clip from MCS-Config.

| Keturn Keller Damper         Keturn Keller PSI         Supply Fan VPD bypass #1         Supply Fan VPD bypass #2           Not Used         Image: Supply Fan VPD bypass #2         Image: Supply Fan VPD bypass #2         Image: Supply Fan VPD bypass #2 |                         |                              |                                     |                                   |                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------------------|-----------------------------------|-----------------------------|--|--|--|--|
| Outside Air Damper                                                                                                                                                                                                                                          |                         |                              |                                     |                                   |                             |  |  |  |  |
| Control Method<br>C AO  • Fixed  • Not Used                                                                                                                                                                                                                 | OAD Priority<br>Control | Econ Control RET<br>Not Used | OAD Fault Detection<br>& Diagnostic | Outside Air Damper Relay          | OAD AO Feedback             |  |  |  |  |
| Open On Low Building Static?<br>CYes ⓒ No                                                                                                                                                                                                                   | CO2<br>CO2 over<br>CFM  | Econ Control O/S<br>Not Used | <ul> <li>Disable</li> </ul>         | Outside Air Damper AO<br>Not Used | Outside Air CFM<br>Not Used |  |  |  |  |

2. The are two options for the OA Damper position indication/proof. The type of Feedback is determined by the sensor input type that is pointed to in the OAD AO Feedback (Green Box). See **above** screen clip from MCS-Config.

a. If the OAD AO Feedback sensor input display type is a Digital (see red box in screen clip below), then when the dry contacts on the damper feedback switch are closed the damper is fully open. Then the dry contact are open the damper is not fully open.

|   | Sensor Input Information Screen |                        |              |           |                                                |                                       |                                   |                                             |  |  |  |  |
|---|---------------------------------|------------------------|--------------|-----------|------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------------------------|--|--|--|--|
| Γ | Point<br>Number                 | Name (1 to 10<br>char) | Display Type | Offset    | Manual Value or<br>NC/NO (select<br>to change) | Display Text<br>(select to<br>change) | Temp./GPM /CFM /<br>Pwr Factor SI | Humd./PSI/<br>Temp. Diff./<br>Enthal. Diff. |  |  |  |  |
|   | 11.0                            | MART - ult             | DICITAL      | Not Used  | Closed=0FF                                     | OK/TRIP                               | Not Used                          | Not Used                                    |  |  |  |  |
|   | M10                             | 0/A DmpS₩              | DIGITAL      | l ot Used | Open=OFF                                       | NO/YES                                | Not Used                          | Not Used                                    |  |  |  |  |
|   | M11                             | U/A Imp                | MCST100      | 0         | 85                                             | Not Used                              | Not Used                          | Not Used                                    |  |  |  |  |
|   | M12                             | 0/A Humid              | HUMD OS      | 0         | 60                                             | Not Used                              | Not Used                          | Not Used                                    |  |  |  |  |
|   | M13                             | AirFlow                | DIGITAL      | Not Used  | Open=OFF                                       | NO/YES                                | Not Used                          | Not Used                                    |  |  |  |  |
|   | M14                             | PhaseLoss              | DIGITAL      | Not Used  | Closed=OFF                                     | OK/TRIP                               | Not Used                          | Not Used                                    |  |  |  |  |
|   | M15                             | Run/Stop               | DIGITAL      | Not Used  | Open=OFF                                       | STOP/RUN                              | Not Used                          | Not Used                                    |  |  |  |  |
|   | M16                             | EmgStop                | DIGITAL      | Not Used  | Closed=OFF                                     | NO/YES                                | Not Used                          | Not Used                                    |  |  |  |  |

b. If the OAD AO Feedback sensor input display type is a Percent (See blue box in screen clip below), then when the sensor input reading is greater than the setpoint #132 value the OAD Damper is considered to be fully open. When the sensor input reading is less than or equal to setpoint #132 value the OAD Damper is not fully open.

| Sensor Input Information Screen |                        |              |          |                                                |                                       |                                 |                                             |  |  |  |  |  |
|---------------------------------|------------------------|--------------|----------|------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------|--|--|--|--|--|
| Point<br>Number                 | Name (1 to 10<br>char) | Display Type | Offset   | Manual Value or<br>NC/NO (select<br>to change) | Display Text<br>(select to<br>change) | Temp./GPM /CFM /<br>PwrFactorSI | Humd./PS1/<br>Temp. Diff./<br>Enthal. Diff. |  |  |  |  |  |
| M-9                             | MtrFault               | DIGITAL      | Not Used | Closed=OFF                                     | OK/TRIP                               | Not Used                        | Not Used                                    |  |  |  |  |  |
| M10                             | 0/ADamper%             | PERCENT      | 0        | 0                                              | Not Used                              | Not Used                        | Not Used                                    |  |  |  |  |  |
| M11                             | U/AImp                 | MCSITUU      | 0        | 85                                             | Not Used                              | Not Used                        | Not Used                                    |  |  |  |  |  |
| M12                             | 0/A Humid              | HUMD OS      | 0        | 60                                             | Not Used                              | Not Used                        | Not Used                                    |  |  |  |  |  |
| M13                             | AirFlow                | DIGITAL      | Not Used | Open=OFF                                       | NO/YES                                | Not Used                        | Not Used                                    |  |  |  |  |  |
| M14                             | PhaseLoss              | DIGITAL      | Not Used | Closed=OFF                                     | OK/TRIP                               | Not Used                        | Not Used                                    |  |  |  |  |  |
| M15                             | Run/Stop               | DIGITAL      | Not Used | Open=OFF                                       | STOP/RUN                              | Not Used                        | Not Used                                    |  |  |  |  |  |
| M16                             | EmgStop                | DIGITAL      | Not Used | Closed=OFF                                     | NO/YES                                | Not Used                        | Not Used                                    |  |  |  |  |  |
| 1-1                             | SPARE1-1               | SPARE        | 0        | 0                                              | Not Used                              | Not Used                        | Not Used                                    |  |  |  |  |  |

3. Setpoint #132 "OAD Fault" is used for determining when the OA Damper is fully open and once open detecting is the damper faults closed.

|   | Setpoint Information Screen |                |       |     |      |                 |               |                              |                           |                             |                         |                                             |                                 |                     |          |                            |   |
|---|-----------------------------|----------------|-------|-----|------|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---|
| Γ | #                           | Name           | Value | Min | Max  | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Б |
|   | 130                         | ReheatAdjust   | 1     | 1   | 8    | 1               | 10            | 15                           | 0                         | 0                           | Non-Active              | HUMD or %                                   | View Only                       | Delay               |          | <u> </u>                   |   |
| Г | 121                         | Hi CO2 Open    | 1365  | 500 | 2000 | 1               | 20            | 20                           | 0                         | 0                           | Non-Active              | METER/LEA                                   | Maw Only                        | Tarnet              |          |                            |   |
|   | 132                         | OAD FAULT      | 95    | 75  | 100  | 1               | 5             | 60                           | 2                         | 10                          | Active                  | HUMD or %                                   | View Only                       | Lockout             |          | . 90                       | 0 |
|   | 133                         | No Heat Hi Amb | 65    | 50  | 90   | U               | U             | U                            | U                         | U                           | Non-Active              | TEMP                                        | View Only                       | Larget              |          |                            |   |

- 4. When the run command for the unit is applied to MCS-Magnum controller, the OA Damper will be open, if setup for a Fixed type the OA Damper relay is tuned on, if setup for AO type the analog output is set to the value in setpoint #122 Economizer Max VLV %.
- 5. The MCS-Magnum will than wait for X seconds for the OA Damper feedback to indicated the OA Damper is open. Where X is the calculated value of setpoint #132 Time field plus the Sec to ignore Safety fields (red box in screen clip below). If time delay expires before the OA Damper feedback indicates the OA Damper is open, the unit is locked out, an "OAD Fault" alarm is generated and the Alarm Relay(if setup) is turned on. And the unit is not allowed to run again until a manual Lockout Reset is performed by a service technician. If the OA Damper feedback indicated the damper is open before the time expires, the unit is allow to continue to run and the Supply Fan will be allow to start.

|   |     | Setpoint Information Screen |       |     |      |                 |               |                              |                           |                             |                         |                                             |                                 |                     |          |                            |   |
|---|-----|-----------------------------|-------|-----|------|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---|
| Γ | #   | Name                        | Value | Min | Max  | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | E |
|   | 130 | ReheatAdjust                | 1     | 1   | 8    | 1               | 10            | 15                           | 0                         | 0                           | Non-Active              | HUMD or %                                   | View Only                       | Delay               |          | —                          |   |
|   | 131 | Hi CO2 Open                 | 1365  | 500 | 2000 | 1               | 20            | 20                           | 0                         | 0                           | Non-Active              | METER/LEA                                   | View Only                       | Target              |          |                            | F |
|   | 132 | OAD FAULT                   | 95    | 75  | 100  | 1               |               | 60                           | 2                         | 10                          | Active                  | HUMD or %                                   | View Only                       | Lockout             |          | 90                         | 0 |
|   | 133 | No Heat Hi Amb              | 65    | 50  | 90   | 0               | 0             | 0                            | 0                         | 0                           | Non-Active              | TEMP                                        | View Only                       | Target              |          |                            | - |
|   | 124 | Llum Dimor Text             | 0     | n   | 0    | n               | 0             | 0                            | 0                         | 0                           | Non Active              | TEMD                                        | Cumonian                        | Tarrent             |          | 1                          |   |

6. Once OA Damper is open and the Supply Fan is running, the MCS-Magnum will monitor the OA Damper Feedback sensor and if it indicates the damper is not fully open for Y seconds, the unit is locked out, an "OAD Fault" alarm is generated and the Alarm Relay(if setup) is turned on. And the unit is not allowed to run again until a manual Lockout Reset is performed by a service technician. Where Y is the value of setpoint #132 Time field. (red box in screen clip below).

| ž | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                     |               |      |     |      |   |    |    |   |    |              |           |           |         |        |   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-----|------|---|----|----|---|----|--------------|-----------|-----------|---------|--------|---|
|   | System Setup RD & Site ADs MAG RTU Circuit Base Circuit Si Setpoints Auth Schedule BMS Points EX/ Control Lookup Table                                                                                                                                                                                                                                                    |               |      |     |      |   |    |    |   |    |              |           |           |         |        |   |
|   | Setpoint Information Screen                                                                                                                                                                                                                                                                                                                                               |               |      |     |      |   |    |    |   |    |              |           |           |         |        |   |
| Γ | #     Name     Value     Min     Max     Adjust<br>Value     Time<br>(SEC)     Max Time<br>(SEC)     Lockout<br>Delay<br>(HRS)     Safety<br>Down<br>Time(MIN)     Active or<br>Non-Active     Select Value:<br># decimals &<br>print char     Level Of<br>Auth. To<br>Display     Type of<br>Selpoint     Comments<br>SEC to<br>Safety     SEC to<br>Window to<br>Safety |               |      |     |      |   |    |    |   |    |              |           |           |         |        |   |
|   | 130                                                                                                                                                                                                                                                                                                                                                                       | Reheat Adjust | 1    | 1   | 8    | 1 | 10 | 15 | 0 | 0  | Non-Active . | HUMD or % | View Only | Delay   | <br>—  | — |
|   | 131                                                                                                                                                                                                                                                                                                                                                                       | Hi CO2 Open   | 1365 | 500 | 2000 | 1 | 20 | 20 | 0 | 0  | Non-Active . | METER/LEA | View Only | Target  |        | — |
|   | 132                                                                                                                                                                                                                                                                                                                                                                       | OAD FAULT     | 95   | 75  | 100  | 1 | 5  | 60 | 2 | 10 | Active       | HUMD or % | View Only | Lockout | <br>90 | 0 |

### 4.4.2 NON-OUTSIDE AIR UNIT USING:

#### 4.4.2.1. ECONOMIZER - provides free cooling

As an economizer the damper will be modulated to provide free cooling prior to any mechanical cooling steps being activated. Refer to setpoint #119 through #126 for settings.

| 119 | EcoOffsetON                        | TARGET   | If active the temperature differential to allow the outside air damper logic to run as an economizer will be the value of this set point. If inactive then the differential will be 2.0 degrees.<br>The outside control temperature differential must be greater than the return control temperature to enable the economizer to be active.<br>1. If STP119 is setup as a target type and the setback value is not equal to zero then Differential is set equal to the value of STP119. setback, else Differential value is set equal to a hardcoded 1.0<br>2. Economizer ON -> if R/A temp is greater than O/A + STP119 value<br>3. Economizer OFF -> if R/A temp is less than (O/A temp + STP119. value – differential)<br>Example: If return is 80 and ambient is 78 we will enable the economizer based on the value of setpoint 119 being 2. |
|-----|------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120 | Eco Stg Dely                       | SETPOINT | Once the economizer valve has been opened to its maximum and<br>all fans associated only with it have been turned on, the economizer<br>function will wait this time in seconds before the first condenser fan is<br>turned on or VFD is set to its minimum position. The minimum setting<br>of the VFD is the value of Setpoint #54 "CND MIN SPD".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 121 | Economizer MIN<br>VLV%             | TARGET   | Minimum Outside air damper (Economizer) Analog Output valve<br>percentage. This will be the value used when first starting the econ-<br>omizer function as well as the lowest level before turning off. This<br>setpoint must be active to indicate that the Economizer AO option is<br>active. This percent of opening must be maintained to version require-<br>ments; only exception is in a smoke or fire situation then the opening<br>goes to 0%<br>If the system is in HEATING mode with Direct Fire Heating the Night<br>Setback value will be added to the value of this setpoint to force the<br>damper to be open. For example if the value is 10.0 and the Night Set<br>back is 43.5 then the minimum damper opening when in Heating mode<br>with direct fire heater will be 53.5%.                                                   |
| 122 | Economizer MAX<br>VLV%             | SETPOINT | Maximum Economizer Analog Output valve percentage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123 | Economizer MAX ADJ                 | SETPOINT | Maximum adjustment to the Economizer Analog Output valve percent-<br>age with each calculation. Formula:[absolute value of(Target – current)<br>* Multiplier setpoint #126] / Divisor setpoint #126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 124 | Economizer VFD<br>Adjustment Delay | SETPOINT | Delay between Economizer Analog Output valve adjustments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 125 | NOT USED                |       |                                                                                                                                                                                                                                                 |
|-----|-------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 126 | Economizer MULT/<br>DIV | DELAY | Setpoint is used to scale adjustments to the Economizer Analog Output valve percentage. The difference between the control sensor and its target will be multiplied by this value and then divided by the value in the MAX VFD Adjustment cell. |

- 1. Provides a minimum amount of outside air under normal operating conditions:
- 2. Refer to setpoint #121.
- 3. Ensure in-door air quality based upon the CO2 level; refer to setpoint #131, by maintaining a minimum opening if high CO2 exists.
- 4. Provide air flow based upon set point #127 by maintain a minimum opening to keep the flow with in it control zone.
- 5. Close economizer based on Low Ambient (Setpoint #192).

Note items 2, 3, & 4 provide a minimal opening for the damper.

#### 4.4.2.1.1. Economizer ON/OFF

- 1. If STP119 is setup as a target type and the setback value is not equal to zero then Differential is set equal to the value of STP119.setback, else Differential value is set equal to a hardcoded 1.0
- 2. Economizer ON -> if R/A temp greater than O/A + STP119.value
- 3. Economizer OFF -> if R/A temp less than (O/A temp + STP119.value differential)

If return is 80 and ambient is 78 we will enable the economizer based on the value of setpoint 119 being 2

When turning off say we have a 1 in the setback. 2-1=1 so we will disable the economizer when we are one degree apart.

#### 4.4.3 C02 - INDOOR AIR QUALITY

Controlling indoor air quality using Outside Air Damper and or Supply Fan

| 13 | CO2 opening                       | DELAY    | If active and the CO2 level goes above the value of this set-<br>point than set the Outside Air Damper to the value in the (Min<br>VFD Opening) Field.<br>Note: If Setpoint #207 "CO2 High Min Damper opening" is<br>active the value of this setpoint will be the minimum opening.<br>(This is used when BMS wants to write/change the minimum<br>opening.)<br>Optional: modulating Outside Air Damper on High CO2 levels.<br>The setpoint value will be the target along with the High Zone<br>and Low Zone. The (Time (SEC)) Field is the delay between<br>adjustments.<br>Setpoint #207 "CO2 Modulating Multiplier/Divisor" value will<br>be the multiplier and the MAX VFD ADJ will the divisor for the<br>scaling of adjustment. |
|----|-----------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20 | 07 CO2 High Min<br>Damper opening | SETPOINT | Set point usage if not 100% Outside Air unit.<br>If the CO2 level is high, greater than value of setpoint #131<br>"CO2 Opening" the minimum opening of the outside air damp-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

er will be the value of this setpoint.

|     | CO2 Modulating<br>Multiplier/Divisor | DELAY  | Set point usage if modulating the Outside Air Damper on High<br>CO2 Levels.<br>The value will be the multiplier and the MAX VFD ADJ will be<br>the divisor for the scaling of adjustment.                                                                              |
|-----|--------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 231 | CO2 adjustments                      | DELAY  | Set point only used when the supply fan is controlled on CO2.<br>Value: Minimum adjustment to the value of set point #225.<br>Safety time: Delay between adjustments to the value of set<br>point #225.<br>MAX ADJ: Maximum adjustment to the value of set point #225. |
| 232 | Supply Fan Cooling<br>Limits         | TARGET | Used when the supply fan is controlled on CO2.<br>Provides the minimum and maximum settings for value of set<br>point #225 when the unit is the cooling mode.<br>Value: Minimum value setting of #225.<br>High Zone: Maximum value setting of #225.                    |
| 233 | Supply Fan Heating<br>Limits         | TARGET | Used when the supply fan is controlled on CO2.<br>The minimum and maximum settings for value of set point<br>#225 when the unit is the heating mode.<br>Value: Minimum value setting of #225.<br>High Zone: Maximum value setting of #225.                             |

### 4.4.4 Building Static Control

#### HIGH STATIC PRESSURE

When the supply fan is on, the duct static pressure will be tested for a high condition. If the duct static pressure is greater than the value of setpoint #149 for the safety time of this setpoint a HIGH STATIC pressure alarm message will be generated and the unit will be placed in a lockout condition. The system will attempt to restart if this setpoint is setup for auto restart.

| 149 | High Static PSI | If the supply duct static pressure is greater than the value<br>this setpoint for the time in the safety time a high pressure<br>alarm will be generated and the system will be locked out. |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                 | this setpoint for the time in the safety time a high press<br>alarm will be generated and the system will be locked                                                                         |

#### LOW STATIC PRESSURE

When the supply fan is on, the duct static pressure will be tested for a low condition. If the duct static pressure is less than the value of setpoint #146 for the safety time of this setpoint a low static pressure alarm message will be generated and the unit will be placed in a lockout condition. The system will attempt to restart if this setpoint is setup for auto restart.

| 146 | Low Static PSI | Lockout | If the duct static pressure is less than the value of this setpoint<br>for the time in the safety time a low pressure alarm will be |
|-----|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
|     |                |         | generated and the system will be locked out.                                                                                        |

#### 4.5. Smoke & Fire Alarm Indicators and Smoke Purge:

| Smoke Alarm Indic. | Smoke Damper Relay | Smoke Indicators |  |
|--------------------|--------------------|------------------|--|
| Fire Alarm Indic.  | Not Used           | Smoke Purge      |  |
| Not Used           | Not Used           |                  |  |

If either the smoke or fire alarm indicators, these are digital inputs are on the following action is taken:

- 1. Supply fan is off & at 0%.
- 1. Exhaust fan is off & at 0%,
- 1. Outside air damper is closed,
- 1. The RTU state is set to either "OFF SMOKE ALARM" or "OFF FIRE ALARM",
- 1. The RTU & Cool states are set to either "OFF SMOKE ALARM" or "OFF FIRE ALARM",
- 1. All cooling and heating stages are off.

This indicates that a smoke or fire condition exists.

| Smoke Alarm Indic.            | Smoke Damper Relay              | Smoke Indicators | Smoke Purge Control           |                 |                     |                                 |  |  |
|-------------------------------|---------------------------------|------------------|-------------------------------|-----------------|---------------------|---------------------------------|--|--|
| Not Used                      | Not Used                        | Smoke Purge      | Supply Fan<br>○ On ⊙ Off ○ No | Change          | Exhaust Fan         |                                 |  |  |
| Fire Alarm Indic.<br>Not Used | Smoke Damper Indic.<br>Not Used | S/A Temp         | Return Damper<br>On Off       | Outside<br>C On | Air Damper<br>• Off | Disable Cool/Heat<br>○ On ● Off |  |  |

If the Smoke Purge is indicated, this is a digital input and it is on the following action is taken.

- If the Cool/Heat state is not either "OFF SMOKE ALARM" or "OFF FIRE ALARM", the Cool/Heat state will be change to "OFF SMOKE ALARM". All cooling stages will be turned off and then the RTU state will be set to "SMOKE PURGE", if off there is no change to mode and supply fan will be controlled on static pressure.
- 1. Supply fan is on & at 100%, off & at 0%, or no change & supply fan is controlled by static pressure based upon selection in the Smoke Purge Control

#### 4.6. SINGLE ZONE VAV SUPPORT

|                 | Ма                | Magnum RTU Information Screen |                                      |              |                    |  |  |  |  |  |  |  |  |
|-----------------|-------------------|-------------------------------|--------------------------------------|--------------|--------------------|--|--|--|--|--|--|--|--|
|                 |                   | Information                   | Panel Selector                       |              |                    |  |  |  |  |  |  |  |  |
| 🔘 General Info  | Ventilation Info  | Cooling Info                  | Condenser Info                       | Heating Info | Cockout Info       |  |  |  |  |  |  |  |  |
| Constant Volume | 🔿 Variable Air Vo |                               | t Type<br>Variable Air Volume Single | Zone 0 100%  | Outside Alr Makeup |  |  |  |  |  |  |  |  |

Purpose is to control the supply fan VFD% based upon the Fan Only Mode controlling sensor (which should be the zone (space) temperature for single zone VAV applications

The Single Zone VAV will modulate the supply fan VFD to maintain the zone (space) cooling enable or heating enable set point while the unit's cooling/heating source is modulating to maintain the appropriate supply air set point.

- 1. Under Unit Type select the Variable Air Volume Single Zone option.
- 2. Set point #225 must be a SETPOINT type.

#### **USE THE FOLLOWING SET POINTS:**

| 131 | CO2 opening | SETPOINT | Provides the maximum CO2 value. |
|-----|-------------|----------|---------------------------------|
|     |             |          | Value Maximum CO2 value.        |

| 207 | CO2 High Min Damper<br>opening | DELAY    | Fine tune the amount of adjustment, control sensor value<br>minus value of set point #219.<br>The value will be the multiplier and the MAXVFD ADJ will be<br>the divisor for the scaling of adjustment.                                                                                                                                                                       |
|-----|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 218 | Enable cooling mode            | TARGET   | This set point will be used when the unit is not in heating<br>mode.<br>Temperature zone is created using the value and the high<br>zone value for +                                                                                                                                                                                                                          |
| 219 | Enable heating mode            | TARGET   | This setpoint value will be used when the unit is in heating<br>mode.<br>Temperature zone is created using the value and the high and<br>low zones.                                                                                                                                                                                                                           |
| 225 | Supply Fan Speed               | SETPOINT | This setpoint value will be modified to the Supply Fan VFD%.<br>The Supply Fan VFD analog output will be set to this set point<br>value. The value shown is the calculated/adjusted supply fan<br>speed.<br>Value is the output in Vent Mode.                                                                                                                                 |
| 231 | CO2 adjustments                | TARGET   | Provides the minimum and mazimum Supply Fan VFD% ad-<br>justments, delay between adjustments.<br>Value: Minimum adjustment to Supply Fan VFD% allowed.<br>Safety Time: Delay between adjustments to the Supply Fan<br>VFD%.<br>High Zone: Maximum adjustment to Supply Fan VFD% al-<br>lowed.                                                                                 |
| 232 | Supply Fan Cooling<br>Limits   | TARGET   | The values of this setpoint are used when the unit is cooling or<br>fan only modes.<br>Value: Minimum Supply FanVFD% setting when the unit is<br>cooling or fan only modes & CO2 is not high.<br>High Zone: Maximum Supply FanVFD% setting when the unit<br>is cooling or fan only modes.<br>Low Zone: Minimum Supply FanVFD% setting when CO2 is<br>high regardless of mode. |
| 233 | Supply Fan Heating<br>Limits   | TARGET   | The values of this setpoint are used when the unit is in heating<br>mode. Used when the supply fan is controlled on CO2.<br>The minimum and maximum settings for value of set point<br>#225 when the unit is the heating mode.                                                                                                                                                |
|     |                                |          | Value: Minimum value setting of #225.<br>High Zone: Maximum value setting of #225.                                                                                                                                                                                                                                                                                            |

1. Controlling temperature sensor is the sensor selected as the zone temp under the fan only mode in the general info screen.

### **Processing Steps:**

- 1. Delay between Supply Fan VFD% adjustments is based on safety time of set point #231.
- 1. Calculate Supply Fan VFD% adjustment: Adjustment = control temperature - the value of the enable set point (if in heating then #219 else #218). This value is fine-tuned with values of set point #207 and limited by values of set point #231.
- 1. If not in heating mode: Set point #218 will be used to create the control zone and set point #232 will be used

when modulating the supply fan VFD.

If the control temperature is above the control zone then the temperature is too warm increase the fan speed by the adjustment value.

If the control temperature is above the control target and below top of the control zone then the temperature is acceptable, no change to the fan speed is required.

If the control temperature is below the control zone then the temperature is too cold decrease the fan speed by the adjustment value.

The minimum & maximum Supply Fan VFD% will be blocked with set point #232.

1. If in heating mode: Set point #219 will be used to create the control zone and set point #233 will be used when modulating the supply fan VFD.

If the control temperature is above the control zone then the temperature is too cold decrease the fan speed by the adjustment value.

If the control temperature is below the control target and above the bottom of the control zone then the temperature is acceptable, no change to the fan speed is required.

If the control temperature is below the control zone then the temperature is too warm increase the fan speed by the adjustment value.

The minimum & maximum fan speed will be blocked with set point #233.

When in Vent Mode, set the speed to the value in setpoint #225.

2. If high CO2 then the minimum fan speed will be value in Low Zone cell of #232.

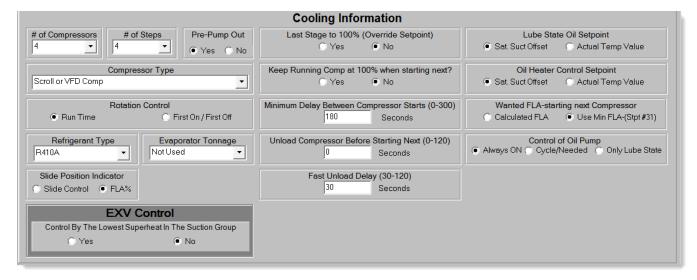
#### 4.7. ENERGY RECOVERY WHEEL (ERW) WHEEL



Energy Recovery Wheel status is display both on the MCS Magnum display and by MCS Connect.

#### 4.7.1 The Energy Recovery Wheel (ERW) setup requires:

- 1. ER Wheel RO cell points to the relay that will control the ER wheel. When the ER wheel is called to be on, rotating, this relay will be turned on. The Min Run-Time (SEC) cell in the Relay Output Information Screen for this relay contains the time between defrost cycles if required.
- 1. ER Wheel Return air cell points to the sensor input of the return control sensor.
- 1. ER Wheel Outside air cell points to the sensor input of the outside control sensor.
- 1. ER Wheel Rotation, if used this is a digital input that when on indicates that there is no wheel rotation.
- 1. ER Wheel Fault, if used this is a digital input that when on indicates that a fault has occurred with the heat wheel. If a fault occurs an alarm message will be generated. There will be no interruption to the unit processing.
- 1. ER Wheel Exhaust Fan RO, if used this relay will be turned on when the ER wheel is active.
- 1. ER Wheel Exhaust Fan AO, if used this analog output will be set to 100% when the ER wheel is active else it will be set to 0% opening.


Setpoint #228, H-WHEEL Defrost, the value of this setpoint controls when a defrost cycle is enabled. If the wheel is on and the ambient temperature is less than this value then a defrost cycle is initialized.

#### 4.7.2 Energy Recovery Wheel (ERW) control logic:

- 1. The ER wheel cannot be enabled if the Unit State is EVAP FAN ONLY or the Cooling State is ECONOMIZ-ER ONLY.
- 2. If in Cooling or Dehumid Mode and the ER Wheel Return sensor temperature is less than the ER Wheel Out sensor temperature the ER Wheel relay will be turned on.
- 3. If in Heating Mode and the ER Wheel Return sensor temperature is greater than the ER Wheel Out sensor temperature the ER Wheel relay will be turned on.
- 4. Defrost cycle; if the heat wheel relay has been on for a time greater than the value in the Min Run Time(SEC) cell and the ambient temperature is less than the value of setpoint #228 a defrost cycle will be initiated. The ER wheel relay will be turned off and the ER wheel state will be set to DEFST and the state timer reset. The defrost cycle will be terminated when the state timer is greater than the safety time of setpoint #228. At this point the ER wheel state will be changed to ON, the ER wheel relay will be turned on, and the state timer reset.
- 5. An information message will be generated if the ER wheel relay is on and either ER Wheel Rotation 1 or Heat Wheel Rotation 2 digital inputs are on.

# **Chapter - 5.** Cooling Information

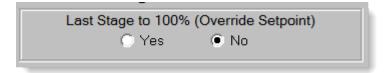
#### 5.1. Selecting Cooling Info Button



The compressor type is selected from a drop down list in the Cooling Information panel on the Magnum RTU screen.

- Reciprocating Compressor with Oil
- Reciprocating Compressor without Oil
- Screw Compressor with Oil
- Scroll Compressor
- Hanbell-Load NO (load solenoid wired to normal open) Screw Compressor
- Hanbell-Load NC (load solenoid wired to normal close) Screw Compressor
- Hanbell- 3 Solenoid (50-100%) (not variable but 3 fixed step screw) Screw Compressor
- Hanbell- Step (fixed step) Screw Compressor
- Hitachi Screw Compressor
- Bitzer Screw Compressor
- Hartford Screw Compressor
- Carlyle Screw Compressor
- Centrifugal Compressor
- Mitsubishi Screw Compressor
- TurboCor Compressor
- Trane Screw Compressor
- McQuay Frame 4
- Fu Sheng Compressor
- Trane Trio
- Trane Quad

### 5.2. Energy Efficient Compressor Staging


In a multi-screw system, it may be more efficient to run the screws at less than 100% capacity until all compressors have been turned on. The following setpoints are used to control the screw compressor staging:

- Setpoint #30 "MAX SLIDE %" contains the maximum slide percentage, based upon amp draw before the system will bring on the next compressor.
- Setpoint #31 "MIN SLIDE %" contains the minimum slide percentage, based upon amp draw, before the system will reduce the number of compressors wanted on.

For example if "MAX SLIDE %" is 80% and the "MIN SLIDE %" is 40%, the two-screw compressor system would be ramped up as follows:

The Lead compressor will be started at 40% and increased up to 80%. If more capacity is needed the next compressor will be started at 40% and the first compressor decreased to 40%. The two compressors will then have their slide positions changed together. Since there are only two compressors, they will be ramped together up to 100% if required. If both compressors are at 40% and less capacity is needed, one compressor will be turned off and the other increased to 80%.

If running compressors at 100% is not desired, then the "Last Stage to 100% (Override Setpoint)" cell in the Cooling Information panel of the Magnum RTU screen should be set to 'No'. Then the maximum capacity allowed will be the value in setpoint #30. If 'Yes', then all compressors will load to the value in setpoint #30 until all compressors are on, then they will load to 100% together.



#### 5.3. Expanded Compressor Rotation to Check for Maximum Run Time

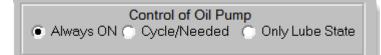
In the Cooling Information panel of the Magnum RTU screen in MCS-Config, there is now a check box to select how compressors are to be rotated, based either on Run Time or First On/First Off.



Screw, centrifugal, and compressors with external oil pumps all use this state. This state is used to ensure proper oil flow prior to compressor startup. Options that affect this state are setup in Cooling Information button under the Magnum RTU screen and in the Setpoints screen:

In this state the following Relay Outputs, if present, are set as follows:

- 1. Compressor relay(s) are OFF.
- 2. Oil pump is ON.
- 3. If suction group running is either 1 or 2 the hot gas solenoid is OFF.
- 4. Fast unloader is ON.
- 5. First 120 seconds or until the unload switch is ON the unloader is ON else it is OFF.
- 6. Loader is OFF.
- 7. VI increase and decrease are OFF.
- 8. Start unloader is OFF.
- 9. Low discharge superheat relay is OFF.
- 10. All liquid line solenoids are OFF.
- 11. Oil equalization relay is ON.
- 12. All unloaders are OFF if they are load type else they are ON.
- 13. All turbo ice relays are off.
- 14. Oil heater is controlled to maintain oil temperature.


All of the following conditions must be met within the time allowed in setpoint #41 "LUBE DELAY". If the compressor type is centrifugal an additional 10 seconds will be allowed for these conditions to be met.

- 1. Oil differential must be equal to or greater than the value in setpoint #40 "LUBE OIL PSI". If this setpoint is not active this test is bypassed.
- 2. Oil temperature must be equal to or greater than the calculated oil temperature target. If setpoint #39 "LUBE OIL TEMP" is not active this test is bypassed. If the compressor type is centrifugal and the option to use the saturated temperature is indicated, then the value of the saturated temperature will be added to setpoint #39 "LUBE OIL TEMP", else the value of setpoint #39 will be used by itself as the calculated oil temperature target.
- 3. The compressor must be unloaded. If there is an unloaded indicator it must be on. If it is a centrifugal compressor, it is forced to stay in this state for minimum of 15 seconds. If the compressor has no unloaded indicator it must stay in this state for a minimum of 10 seconds less than setpoint #41 "LUBE DELAY".

If all of these conditions are met within the allotted time, the compressor will move to another state.

#### 5.4. Oil Pump Control Option

The Magnum supports 3 different types of oil pump control. This option is selected in in the 'Control of Oil Pump' box in the 'Cooling Information' panel under the Magnum RTU screen.

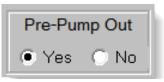


- OIL PUMP ALWAYS ON The oil pump will start before the compressor to build up oil pressure and will always be on when the associated compressor is on. If the oil pressure drops below setpoint #74 "OIL PUMP OFF", then shut down the associated compressor and generate a LOW DIFFERENTIAL alarm. The oil pump will continue running after the compressor is turned off regardless of the reason, for the time specified in setpoint #62 "PUMP DOWN DELAY".
- OIL PUMP CYCLES AS NEEDED After the compressor has been running for 2 minutes and when the differential pressure (discharge pressure minus suction pressure) is greater than

setpoint #74 "OIL PUMP OFF", then the oil pump will be turned off. If the differential pressure drops 10 PSI below the value of setpoint #74, then the oil pump will be turned on again.

OIL PUMP LUBE ONLY – After the compressor has been running for 2 minutes and when the differential pressure (discharge pressure minus the suction pressure) is greater than setpoint #74 "OIL PUMP OFF", then the oil pump will be turned off. If the differential pressure has not reached setpoint #74 after 5 minutes, then shut down the associated compressor and generate a LOW DIFFERENTIAL alarm. If the differential pressure has been reached and the oil pump turned off, then if the differential pressure drops 5 psi below the value of setpoint #74, shut down the associated compressor and generate a LOW DIFFER-ENTIAL alarm.

If a fixed step compressor with an external oil pump the state will either be UNLOADED or LOADED, depending if there are multiple compressor steps.

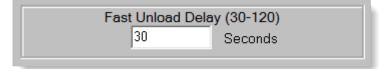

If a variable step compressor, then the percentage wanted on will be checked. If it is less than setpoint #31 "MIN SLIDE %", or option "Use Min FLA" has been selected, the percentage wanted will be set to the value in setpoint #31 "MIN SLIDE %" and the state will be set to HOLDING.

Any associated EXV will be adjusted to allow for additional capacity.

If the compressor does not meet all of the conditions it will be LOCKED OUT and an error message will be generated indicating the reason for the failure: pressure, temperature or time.

#### 5.4.1 PRE-PUMP OUT

This state is only entered if the defrost type is any condition other than NONE. Hot gas will be used to perform the defrosting. This is selected in Cooling Information button under the Magnum RTU screen. When a defrost cycle begins this state is entered and an alarm message is generated. The liquid line solenoid will




be closed and the compressor will remain in this state and continue running until the suction pressure is less

than setpoint #61"PMP DWN OFF" or the time in this state is greater than setpoint #62 "PMP DWN DELY". The compressor will then move to the DEFROSTING state.

#### 5.5. FAST UNLOADING

For screw compressors only, this state is entered when the compressor is turned on. All load solenoids will be turned off and all unload solenoids will be turned on to ensure the screw is fully unloaded. If an oil pump is included in the system it will be turned on during this state. The time in this state is set in the "Fast Unload Delay" cell under the Cooling Information button in the Magnum RTU screen.



# 5.6. MCS-Magnum Oil Recovery Logic - Tandem Variable Speed & Fix Speed scroll compressor

MCS-Magnum Firmware: RTU 17.34X or greater is required MCS-Connect version: 18.20.XX Beta or greater is required MCS-Config version: 18.01X or greater is required



#### 5.6.1 Purpose:

The purpose of the oil recovery logic is to return oil to the variable speed scroll compressor on a tandem refrigeration circuit where there is one variable speed compressor and one fix speed compressor. This logic only works for above compressor setup. No other compressor arrangement is supported, ie. screw compressors, reciprocating compressors, or more than 2 scroll compressors (trios, quads), etc.

If the variable speed compressor runs at low speed for a long period of time it possible the oil in the compressor sump will become too low. Too low of oil condition is indicated by the oil level switch in the variable speed compressor's oil sump. When the variable speed compressor is running and the oil level switch indicates a low condition the MCS-Magnum will enter into the oil recovery logic to collect the oil back into the variable speed oil sump and avoid tripping the compressor on low oil level.

#### 5.6.2 Requirements:

- 1. Tandem Scroll Compressors, one variable speed and the other fix speed.
- 1. Variable speed compressor must have an oil sump level switch.
- 1. MCS-Magnum Config must be setup as follows:
  - a. Setpoints #251 to #255 must be setup

| Setpoint Information Screen |              |       |         |     |                 |               |    |   |                             |                         |   |                                             |                                 |                     |
|-----------------------------|--------------|-------|---------|-----|-----------------|---------------|----|---|-----------------------------|-------------------------|---|---------------------------------------------|---------------------------------|---------------------|
| #                           | Name         | Value | Min Max |     | Adjust<br>Value | Time<br>(SEC) |    |   | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | • | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint |
| 250                         | SETPOINT-250 | 0     | 0       | 0   | 0               | 0             | 0  | 0 | 0                           | Non-Active              |   | Spare                                       | View Only                       | Setpoint            |
| 251                         | OilRecSpeed  | 100   | 50      | 100 | 1               | 5             | 15 | 0 | 0                           | Active                  |   | HUMD or %                                   | View Only                       | Delay               |
| 252                         | OilRecMaxBal | 30    | 10      | 240 | 1               | 0             | 0  | 2 | 10                          | Active                  |   | SECONDS                                     | View Only                       | Alarm               |
| 253                         | ToManyOilBal | 1     | 1       | 20  | 1               | 0             | 0  | 2 | 10                          | Active                  |   | MINUTES                                     | View Only                       | Alarm               |
| 254                         | OilRecMaxBst | 2     | 1       | 20  | 1               | 0             | 0  | 2 | 10                          | Active                  |   | MINUTES                                     | View Only                       | Alarm               |
| 255                         | ToManyOilBst | 45    | 1       | 120 | 1               | 0             | 0  | 2 | 10                          | Active                  |   | MINUTES                                     | View Only                       | Lockout             |

b. Variable Speed Compressor must be configured with Oil Level Switch sensor input.

|   |                         |              |                             |                        | MAGN                     | IUM Circu        | it SI Scree            | n             |                 |               |  |
|---|-------------------------|--------------|-----------------------------|------------------------|--------------------------|------------------|------------------------|---------------|-----------------|---------------|--|
|   | Circu<br>(resi<br>butto | et           | ssure Discharge<br>Pressure | Suction<br>Temperature | Discharge<br>Temperature | Oil Pressure     | Oil Temp               | Motor Temp    | Oil Flow Switch | Liquid Temp   |  |
| ► | 1                       | Suct Psi A   | Disc Psi A                  | Suct Tmp A             | Disc Tmp A               | Disc Psi A       | NotUsed                | Mtr Flt 1A    | NotUsed         | NotUsed I     |  |
|   | 2                       | Suct Psi B   | Disc Psi B                  | Suct Tmp B             | Disc Tmp B               | Disc Psi B       | Not Used               | Mtr Flt 3B    | Not Used        | NotUsed 1     |  |
|   | 3                       | Suct Psi A   | Disc Psi A                  | Suct Tmp A             | Disc Tmp A               | Disc Psi A       | Not Used               | Mtr Flt 2A    | Not Used        | Not Used 1    |  |
|   | 4                       | Suct Psi B   | Disc Psi B                  | Suct Tmp B             | Disc Tmp B               | Disc Psi B       | Not Used               | Mtr Flt 4B    | Not Used        | NotUsed 1     |  |
|   | 5                       | Not Used     | Not Used                    | Not Used               | Not Used                 | Not Used         | Not Used               | Not Used      | Not Used        | Not Used 1    |  |
|   | 6                       | Not Used     | Not Used                    | Not Used               | Not Used                 | Not Used         | Not Used               | Not Used      | Not Used        | NotUsed 1     |  |
|   | 7                       | Not Used     | Not Used                    | Not Used               | Not Used                 | Not Used         | Not Used               | Not Used      | Not Used        | Not Used 1    |  |
|   | 8                       | Not Used     | Not Used                    | Not Used               | Not Used                 | NotUsed          | Not Used               | Not Used      | NotUsed         | Not Used      |  |
|   | 9                       | Not Used     | Not Used                    | Not Used               | Not Used                 | Not Used         | Not Used               | Not Used      | Not Used        | Not Used 1    |  |
|   | 10                      | Not Used     | Not Used                    | Not Used               | Not Used                 | Not Used         | Not Used               | Not Used      | Not Used        | Not Used 1    |  |
| • |                         | <b>•••••</b> | · · · · ·                   |                        |                          |                  |                        | · · · ·       |                 | ·· ·· ·       |  |
|   | Circu<br>(resi<br>butto | et           | emp Pre Oil Filter          | Oil Float              | Leaving Temp             | Refrigerant Temp | Refrig. Leak<br>Sensor | Vane Position | Evap Suct Temp  | Evap Suct PSI |  |
| ► | 1                       | Not Used     | Not Used                    | Oil Lvl 1A             | Not Used                 | NotUsed          | NotUsed                | Not Used      | NotUsed         | NotUsed       |  |
|   | 2                       | Not Used     | Not Used                    | Oil LvI 3B             | Not Used                 | Not Used         | Not Used               | Not Used      | NotUsed         | Not Used      |  |

#### 5.6.3 **Primary/Secondary Tandem Scroll Option:**

If Setpoint #251 TYPE field is setup as "DELAY", then the Fix Speed compressor is only allowed to run if the variable speed compressor can run. If the speed compressor is locked out or disabled, the fix speed compressor will be force in the "VFD TANDEM OFF" state and not allowed to run. It is recommended to enable this option.

If setpoint #251 TYPE field is not a "DELAY" type, then the fixed speed compressor can run without the variable speed compressor.

#### 5.6.3.1. **Oil Recovery Logic:**

The oil recovery logic has two modes, Balance and Boost.

#### 5.6.3.2. **Balance Mode:**

In Balance mode the variable speed compressor speed is set to the value in setpoint #251 "OilRecSpeed" and the fix speed compressor stay off or is forced off. In this mode the variable speed compressor speed is increased to pull oil from the fixed speed compressor oil sump. The variable speed compressor state is set to "OIL REC SPD UP". If the fixed compressor was running, it state is set to "OIL REC OFF". If the fixed speed compressor is not running, it will stay in its current state.

The balance mode is entered when the oil level sensor input has tripped for X seconds. X is defined by the time field in setpoint #251. This indicate the level in the oil sump is low and we need to recovery the oil.

Whn entering the Balance mode, a check is performed to see if time since the last oil recovery action has been too short, indication an issue with the oil or system. If the time of Y (setpoint #255 value) since the boost mode occurred has not passed the compressors are locked out and the alarm "ToManyOilBst" (Too Many Oil Boost actions) is generated. If the time of X min (setpoint #253 value) since the last oil recovery balance mode occurred, the Balance mode is skip and logic goes right to the boost mode. If setpoint #253 is an alarm type, an alarm "To-ManyOilBal" (Too Many Oil Balance Actions) is generated.

#### 5.6.3.3. The balance mode is stopped when:

- a. The oil level sensor input reads OK indicating oil has been recovery to the sump and level is good or,
- b. Time delay specified in setpoint #252 "OilRecMaxBal" value field has been exceeded. If this condition occurs, the oil recovery logic goes to boost mode, or
- c. Run/Stop or flow, etc. wants the unit off, or
- d. Compressor safety trip occurs.

#### 5.6.3.4. **Boost Mode:**

In Boost mode the variable speed compressor speed is set to the value in setpoint #251 "OilRecSpeed" and the fix speed compressor is forced on. In this mode both compressors are run to pull the oil back from the refrigeration circuit. Both compressor's states are set to "OIL REC BOOST ".

The Boost mode is entered when the balance mode did not clear the low oil condition (balance mode max time delay excess before oil level sensor indicator good oil sump level).

The Boost Mode is stopped when:

- a. The oil level sensor input reads OK indicating oil has been recovery to the sump and level is good or,
- b. Time delay specified in setpoint #254 "OilRecMaxBst" value field has been exceeded. If this condition occurs, both compressors are locked out and an "OilRecMaxBst" alarm is generated, or
- c. Run/Stop or flow, etc. wants the unit off, or
- d. Compressor safety trip occurs.

#### 5.7. Setpoint #139 Low Oil Level Safety

With oil recovery logic active this setpoint will now be ignored IF a compressor with a VFD has an Oil level. The oil recovery logic will take over and control the compressor and lock it out if necessary.

If a compressor that is fixed speed (On/Off) with an oil level then setpoint #139 will be used to control the low oil level safety and ignore the oil recovery logic.

If all compressors in the config file are VFD compressors with oil levels and none of the fixed compressors have oil levels than please make setpoint #139 inactive as it serves no purpose.

#### 5.7.1 Setpoint Descriptions Only

#251 – OilRecSpeed – HUMD or % - If setup as "Delay type" Fixed compressor cannot run without the vfd tandem. If not setup as a delay type the fixed compressor will be able to run without the vfd compressor being available.

Value - Speed in % to move the compressor to during an oil balance/boost

Time - Amount of time to wait in seconds after oil level is tripped before entering balance/boost

#252 - OilRecMaxBal - SECONDS - Alarm Type

Value - Max time allowed in seconds to stay in balance mode before moving onto Boost mode

#253 - ToManyOilBal - MINUTES - Alarm Type

Value – If an oil balance occurs twice within this time frame an alarm will be posted and the balance mode will be skipped and will be sent straight to a boost mode.

#254 - OilRecMaxBst - MINUTES - Alarm Type

Value – Max time allowed in minutes to stay in the boost mode before locking out that circuit on an alarm.

#255 - ToManyOilBst - MINUTES - Alarm Type

Value – If an oil boost occurs twice within this time frame an alarm will be posted and the circuit will be locked out.

#### 5.8. UNLOAD DELAY- RECIP/VFD COMPRESSORS

Config Version: 18.01Y or later

On the MAGNUM HVAC/RTU compressor screen, a new cell was added for setting the unload delay before pumpdown. If there's a value greater than "0" in this cell, the logic will enter the "Unload&PumpDown" state when calling for the compressor to shut down. In this state, it will wait the amount of time in that cell, before closing the LLS & or Closing the EXV to perform the normal pumpdown operation.

#### 5.9. EMERGENCY STOP RELAY - CIRCUIT BASE

Config Version: 18.01Y or later

| ጅ 🚰 System Setup ROs Sis                         | AOs MAG RTU Circuit Base           | Circuit SI Setpoints Aut         | h Schedule BMS F                     | Points EXV Control Lookup Tat                 |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------|------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                  | Magnum RTU Information Screen      |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  | Information Panel                  | Selector                         |                                      |                                               |  |  |  |  |  |  |  |  |  |
| General Info Ventilation Info                    | o 💿 Cooling Info 🕥                 | Condenser Info                   | Heating Info                         | C Lockout Info                                |  |  |  |  |  |  |  |  |  |
|                                                  | Unit Type                          |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
| Constant Volume Variable                         |                                    | e Air Volume Single Zone         | 0 100%                               | Outside Alr Makeup                            |  |  |  |  |  |  |  |  |  |
|                                                  | Cooling Inform                     | ation                            |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  | ump Out Last Stage to 100% (Ove    |                                  | Lube State<br>Sat. Suct Offset       |                                               |  |  |  |  |  |  |  |  |  |
|                                                  | • • No                             |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
| Compressor Type<br>Scroll or VFD Comp            | Keep Running Comp at 100%          | -                                | Oil Heater Co                        |                                               |  |  |  |  |  |  |  |  |  |
| Scroll of VFD Comp                               |                                    | NO                               | Sat. Suct Offset                     | C Actual Lemp Value                           |  |  |  |  |  |  |  |  |  |
| Rotation Control<br>C Run Time                   | rst Off Minimum Delay Between Comp |                                  | Wanted FLA-startin<br>Calculated FLA | g next Compressor<br>O Use Min FLA-(Stpt #31) |  |  |  |  |  |  |  |  |  |
| Refrigerant Type Evaporator To<br>R410A V        | unage Unload Compressor Before S   |                                  | Control of<br>Always ON 🔿 Cycle/N    | Oil Pump<br>eeded 🔿 Only Lube State           |  |  |  |  |  |  |  |  |  |
| Slide Position Indicator<br>Slide Control © FLA% | Fast Unload Delay                  | (30-120)<br>Seconds              |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  | Unload Time Delay When Stopp<br>60 | ng Compressor (0-120)<br>Seconds |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  | EXV Contro                         | 1                                |                                      |                                               |  |  |  |  |  |  |  |  |  |
| Control By The Lowest Superheat In The Suction   | Group                              |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
| Yes     No                                       |                                    |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  |                                    |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |
|                                                  |                                    |                                  |                                      |                                               |  |  |  |  |  |  |  |  |  |

New logic for "Coast" relay on Bitzer VFD compressors has been added to the Circuit Base on HVAC/RTU firmware. This allows the ability to point to a relay, that will be activated whenever that circuit is in alarm, OR the unit is in safety shutdown due to Phaseloss, Emg/Stop, etc.

Point to the relay as shown below in the Emergency Stop Relay box. (This relay is not a part of the compressor sequence and can be located on any wired point.)

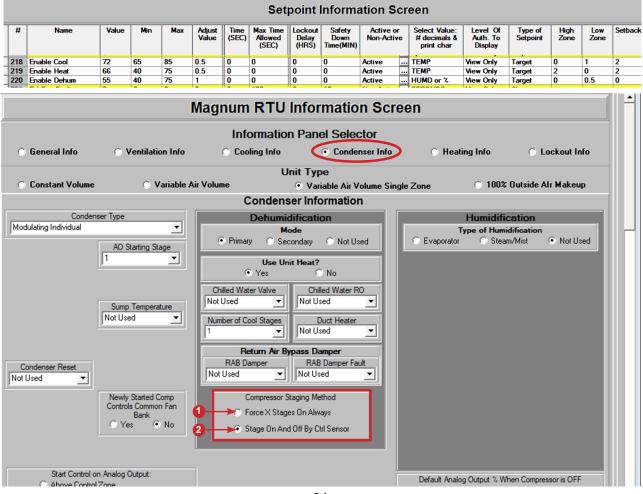
| 2 😫 😂                         | System                                                 | Setup ROs                    | Sis AC          | Ds MA                     | IG RTU          | Circuit Base | Circuit SI   | Setpoints Auth                     | Schedule         | BMS Points          | XV Control     | ookup Table |                     |                     |                         |                       |                             |        |                                                 |                           |
|-------------------------------|--------------------------------------------------------|------------------------------|-----------------|---------------------------|-----------------|--------------|--------------|------------------------------------|------------------|---------------------|----------------|-------------|---------------------|---------------------|-------------------------|-----------------------|-----------------------------|--------|-------------------------------------------------|---------------------------|
| MAGNUM Circuit Base Screen    |                                                        |                              |                 |                           |                 |              |              |                                    |                  |                     |                |             |                     |                     |                         |                       |                             |        |                                                 |                           |
|                               | Information that relates to compressors on the circuit |                              |                 |                           |                 |              |              |                                    |                  |                     |                |             |                     |                     |                         |                       |                             |        |                                                 |                           |
| Circuit#<br>(reset<br>button) | # of<br>Comp<br>ROs                                    | Starting<br>Compressor<br>RO | Part<br>Winding | Start<br>Unioad<br>Bypass | Fast<br>Unloade | r LLS        | f 2nd<br>LLS | Comp.<br>Economizer<br>(Subcooler) | Econo<br>Control | Unloading<br>Stages | Loader<br>Type | HGB         | Liquid<br>Injection | Oil<br>Equalization | Mod<br>Motor<br>Control | Low Disc<br>SuperHeat | External<br>Pump<br>Control | Heater | Liquid Injection 01<br>during Fast<br>Unloading | N Emergency Stop<br>Relay |
| 1                             | 1                                                      | Comp1A                       | No              | No                        | No              | None         | No           | . No                               | . Slide %        | 0                   | Unload         | None        | No                  | No                  | No                      | No                    | No                          | No     | Not Used                                        | COASTR                    |
| 2                             | 1                                                      | Comp2A                       | No              | No                        | No              | None         | No           |                                    | . Slide 🎗        |                     | Unloadı        | None        | No                  | No                  | No                      | No                    | No                          | No     | Not Used                                        | COASTR                    |
| 3                             | 1                                                      | Comp3A                       | No              | No                        |                 | None         | No           | . No                               | . Slide %        | 0                   | Unloadı        | None        | No                  | No                  | No                      |                       | No                          |        | Not Used                                        | COASTR                    |
| 4                             |                                                        | Comp4A                       | No              |                           |                 | None         |              |                                    | . Slide %        |                     | Unload         | None        | No                  | No                  | No                      |                       |                             | No     | Not Useo                                        | COASTR                    |
| 5                             |                                                        | Comp1B                       |                 |                           | No              | None         |              |                                    | . Slide 🎗        |                     | Unloadı        | None        | No                  | No                  | No                      |                       | No                          |        |                                                 | COASTR                    |
| 6                             |                                                        | Comp2B                       |                 |                           |                 | None         |              | . No                               | . Slide %        | 0                   | Unloadı        | None        | No                  | No                  | No                      |                       | No                          |        |                                                 | COASTR                    |
| 7                             | 1                                                      | Comp3B                       |                 |                           | No              | None         |              |                                    | . Slide %        |                     | Unloadı        | None        | No                  | No                  | No                      |                       | No                          |        |                                                 | COASTR                    |
| 8                             | 1                                                      | Comp4B                       | No              |                           | No              | None         | No           |                                    | · Slide 2        |                     | Unload         | None        | No                  | No                  | No                      |                       | No                          |        |                                                 | COACTO                    |
|                               | 0                                                      | N                            | N               | 1.                        | IN.             | M            | - M-         | - M-                               | 1001- 9          | 0                   | 11-1           | M           | M-                  | N                   | V                       | - IN-                 | TM-                         | I No.  | Machan                                          | Next test                 |

### **Chapter - 6. Dehumidification Section** (Condenser Info):

The dehumidification function will only be active if neither cooling nor heating is required and the sensor specified for 'Dehumid Mode" is above the value in setpoint #220.

Effective with version 18.03.01 release, a new option was added for controlling Dehumidification with MCS-RTU firmware, **'Stage compressors On and Off by controlling sensor'.** 

| 220 | Enable dehumidification<br>mode | TARGET | If the 'Forced Dehumidifying' sensor is not used this set point will<br>enable dehumidification mode when the control humidity is above this<br>value and the dehumidify option is primary or the unit is in VENT ONLY<br>mode. Once in the Dehumidify Mode the humidity must drop below this<br>value minus the Low Zone offset.<br>Value: Enable dehumidification value.<br>High Zone: Not used<br>Low Zone: Differential humidity to exit the Dehumidify Mode.<br>Night Setback: Will adjust the dehumidify enable value if system is in<br>the unoccupied mode. |
|-----|---------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----|---------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|


#### 6.1. 'Force X on (old way)' Specify compressor staging method.

Uses Sensor for "Forced Dehumidifying"

#### 6.2. 'Stage On and Off by Control Sensor'

Specify which sensor to stage the compressor on/off when in dehumid mode.

#### 6.2.1 Setpoints for Dehumid 'Stage On and Off by Control Sensor'



### Dehumidification Section (Condenser Info) continued

|                                                                              | Magr                                                    | num RTU Info                      | rmation Screen                                                          |                                             |                                                                |  |  |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|
|                                                                              |                                                         | Information Pai                   | nel Selector                                                            |                                             |                                                                |  |  |  |  |  |  |
| ⑦ General Info ○ V                                                           | Ventilation Info                                        | Cooling Info                      | g Info Condenser Info C Heating Info                                    |                                             |                                                                |  |  |  |  |  |  |
|                                                                              |                                                         | Unit Ty                           | pe                                                                      |                                             |                                                                |  |  |  |  |  |  |
| Constant Volume                                                              | 🔿 Variable Air Volum                                    |                                   | riable Air Volume Single Zo                                             | ne 🔿 100% O                                 | lutside Alr Makeup                                             |  |  |  |  |  |  |
|                                                                              |                                                         | General Info                      |                                                                         |                                             |                                                                |  |  |  |  |  |  |
| Run/Stop Switch<br>Run/Stop V<br>Network Run/Stop<br>Net R/S V<br>Lag Unit C | ng Relay<br>Phase Lo<br>Not Used<br>Unit KV<br>Not Used |                                   | Occupied Indicate<br>Night Setback<br>On/Off<br>Occupied SW<br>Not Used | Ors Warm Up/Pre-Cool<br>Required?<br>Yes No | Forced Cooling<br>Not Used<br>Not Used<br>Not Used<br>Not Used |  |  |  |  |  |  |
| Emergency Stop Unit Sta<br>EmgStop Vit Sta<br>Not Used                       | tus Relay<br>Not Used                                   | <b>_</b>                          | Override SW<br>Not Used                                                 | -                                           | Forced Dehumid                                                 |  |  |  |  |  |  |
| Fan Only Mode:                                                               |                                                         |                                   | Unit Sensors                                                            |                                             | Demand Sensors                                                 |  |  |  |  |  |  |
| Switch to Cooling/Heating (*<br>Switch to Dehumid (*                         |                                                         | C Supply T<br>SupplyAirT          |                                                                         | Return Temp.<br>Not Used                    |                                                                |  |  |  |  |  |  |
| Cooling Stage Control On                                                     |                                                         | C Supply Hi                       | midity Outside Humidity<br>▼ OaDewpoint ▼                               | Return Humidity<br>Not Used                 | Demand Limit FLA %<br>NetLmtDmd                                |  |  |  |  |  |  |
| Dehumid Stage Control On                                                     |                                                         | Zone Hu<br>SpaceH                 | midity <u>Mixed Air</u><br>▼ Not Used <u>▼</u>                          | Clogged Filter                              | Demand Limit Steps<br>Not Used 	▼                              |  |  |  |  |  |  |
| Lost BMS C<br>Run S                                                          | Communication<br>itop • No Cha                          | Inge                              | emp.                                                                    | Flow Switch                                 |                                                                |  |  |  |  |  |  |
| Cooling Target Coolin<br>Not Used Vot Used                                   | ng Enable Heat Tar<br>d Not Used                        | Setpoint Adjust<br>get Heat Enabl |                                                                         | Dehumid Enable                              | Reheat Target<br>Not Used _▼                                   |  |  |  |  |  |  |
| Temp Control Sensor<br>Not Used                                              | Vestibule Co<br>Fan Relay<br>Used _                     | Cooling Relay                     | Heating Relay<br>of Used                                                |                                             |                                                                |  |  |  |  |  |  |

If neither cooling nor heating is required the RTU will be Ventilation Only. From this mode the system can enter a dehumidification mode if the humidity is greater than setpoint #220 or if the Forced Dehumidifying is used and it is on. If the system is moving from the cooling mode to the ventilation only mode and dehumidification is required, the system will not turn off any cooling stages that have been turned on.

#### 6.3. Unit Sensors

The set of sensors for Supply, Ambient, Return and Zone sensors are used in the control logic as indicated in the Control 'Mode On' section as shown above.

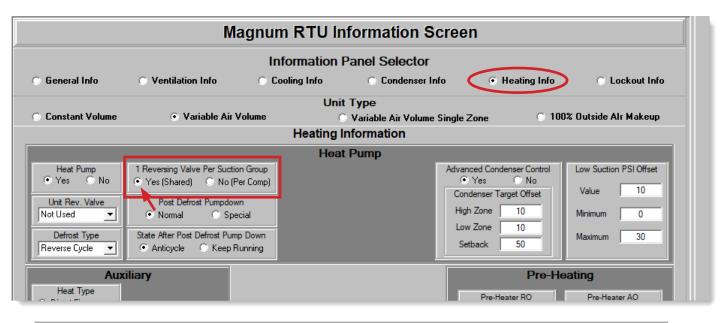
Flow Switch if used, this digital input must indicate that there is flow or the unit will be turned off due to no flow.

|                             | Unit Sensors                      |                             |
|-----------------------------|-----------------------------------|-----------------------------|
| SupplyAirT                  | Outside Temp.<br>Ambient T        | Return Temp.<br>Not Used    |
| Supply Humidity<br>Not Used | Outside Humidity<br>□aDewpoint  ▼ | Return Humidity<br>Not Used |
| Zone Humidity<br>SpaceH 🗨   | Mixed Air<br>Not Used             | Clogged Filter              |
| Zone Temp.<br>SpaceT 💌      |                                   | Flow Switch<br>UnitFlow     |

# **Chapter - 7. Electric Heat For Reheat In Dehumidification**

Config Firmware Version 17.62S and above

Two fields need to be set in the config. Only compressors that are allowed to run are those setup with Reheat type. Decide which compressors run in Reheat Mode with electric heat.


|                                                                                         | Magnum RTU Information Scree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | en                                                                               |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                         | Information Panel Selector<br>© General Info © Ventilation Info © Cooling Info © Condenser Info © Heating Info © Lockout Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| ○ General Info ○ Ventilation Info                                                       | C Cooling Info  Condenser Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C Heating Info C Lockout Info                                                    |  |  |  |  |  |  |  |  |  |  |
| C Constant Volume       Variable /                                                      | Unit Type<br>Air Volume © Variable Air Volume Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Zone 🔿 100% Outside Alr Makeup                                                 |  |  |  |  |  |  |  |  |  |  |
|                                                                                         | Condenser Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Condenser Type<br>R0 Step Individual<br>A0 Starting Stage                               | Dehumidification<br>Mode<br>Primary © Secondary © Not Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Humidification<br>Type of Humidification<br>© Evaporator © Steam/Mist © Not Used |  |  |  |  |  |  |  |  |  |  |
|                                                                                         | Use Unit Heat?<br>• Yes O No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Sump Temperature<br>Not Used                                                            | Chilled Water Valve       Chilled Water RO         Not Used       Image: Chilled Water RO         Number of Cool Stages       Duct Heater         1       Image: Chilled Water RO         Number of Cool Stages       Duct Heater         1       Image: Chilled Water RO         Number of Cool Stages       Duct Heater         1       Image: Chilled Water RO         Number of Cool Stages       Duct Heater         1       Image: Chilled Water RO         Not Used       Image: Chilled Water RO |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| Control Condenser On:<br>Disc PSI<br>Disc/Suct Ratio<br>Diff PSI(Disc-Suct)<br>Other SI |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |  |  |  |  |  |  |  |  |  |  |

In below example cmp 1A and cmp2A has reheat type set as **"Fixed"** so these are the only compressors allowed to run in dehumidification mode. If you want all compressors to run then set all reheat types to fixed.

|   |                                              |      |          |                                                           |               |                                     |                           |                |                 | MAGNU            | ли с       | ircu | it Base                     | e S                   | cree              | n                  |                 |          |                     |                     |                         |        |
|---|----------------------------------------------|------|----------|-----------------------------------------------------------|---------------|-------------------------------------|---------------------------|----------------|-----------------|------------------|------------|------|-----------------------------|-----------------------|-------------------|--------------------|-----------------|----------|---------------------|---------------------|-------------------------|--------|
|   |                                              |      |          |                                                           |               |                                     |                           |                |                 |                  |            | Info | ormation th                 | nat re                | elates            | to compres         | sors on the cir | cuit     |                     |                     |                         | _      |
|   | Circui<br>(rese<br>butto                     | et C |          | Starting<br>ompressor<br>RO                               | Part<br>Windi |                                     | Start<br>Unload<br>Bypass | Un             | Fast<br>nloader | Type of<br>LLS   | 2nd<br>LLS | Eco  | omp.<br>nomizer<br>bcooler) |                       | cono<br>Introl    | Unloadir<br>Stages |                 | HGB      | Liquid<br>Injection | 0il<br>Equalization | Mod<br>Motor<br>Control | L<br>S |
| Þ | 1                                            | 3    | Соп      | np1A                                                      | No            |                                     | No                        | No             |                 | EXV only         | No         | No   |                             | Slid                  | le %              | 0                  | Unload          | On/Off   | No                  | No                  | No                      | No     |
|   | 2                                            | 2    | Соп      | np2A                                                      | No            | ••••                                | No                        | No             |                 | EXV only         | No         | . No |                             | Slid                  | le %              | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 3                                            | 1    | Соп      | np1B                                                      | No            |                                     |                           | No             |                 | None             | No         | . No |                             | Slid                  | le 🎗              | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 4                                            | 1    | Соп      | 1p2B                                                      | No            |                                     | No                        | No             |                 | None             | No         | • No |                             | Slid                  | e 2               | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 5                                            | 0    | Not      | Used                                                      | No            | ••••                                | No                        | No             |                 | EXV only         | No         | • No |                             | Slid                  | le 🎗              | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 6                                            | 0    | Not      | Used                                                      | No            |                                     | No                        | No             |                 | EXV only         | No .       | . No |                             | Slid                  | le 🎗              | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 7                                            | 0    | Not      | Used                                                      | No            |                                     | No                        | No             |                 | None             | No         | · No |                             | Slid                  | <mark>le %</mark> | 0                  | Unloade         | None     | No                  | No                  | No                      | No     |
|   | 8                                            | 0    | Not      | Used                                                      | No            |                                     |                           | No             |                 |                  | No -       | No   |                             |                       | <mark>le ೩</mark> |                    | Unloade         | None     | No                  | No                  | No                      | No     |
|   | <b>n</b>                                     | 0    | N - 1    | 11                                                        | M.,           |                                     | M.                        | N <sub>2</sub> |                 | N                | NI-        | AL.  |                             | en: J                 |                   | l n                | 11-1            | N        | N-                  | M                   | V                       | NI -   |
| H |                                              |      |          |                                                           |               |                                     |                           |                |                 |                  |            |      | Select 0                    | utou                  | e and 9           | Sensor Inci        | uts per circuit |          |                     |                     |                         |        |
|   | Circuit Alarm Relay<br>#<br>(reset<br>button |      | rm Relay | Comp Proof Compr<br>Speed(%) or<br>Modulate Hot<br>Gas AD |               | Compressor<br>Speed Fault Indicator |                           | Pump           | Down            | Evapor<br>EXV Ou | ator       |      | Flow                        | Circuit<br>Pump/Valve | IGV Open<br>%     | Reheat<br>Type     | Reheat AO       | Reheat R | 0                   |                     |                         |        |
|   | 1.                                           | Not  | Used     | Proof C1A                                                 | C1\           | /FD                                 | Norm                      | Not Use        | ed              | Not Used         | Not U:     | ed   | Sys1C/H                     | 12                    | Not               | Used               | Not Used        | Not User | Fixed               | Not Used            | Not Used                |        |
|   | 2.                                           | Not  | Used     | Proof C2A                                                 | Not           | Us                                  | ed                        | FailC2A        | ۹.              | Not Used         | Not U:     | sed  | Sys2C/H                     | 12                    | Not               | Used               | Not Used        | Not Usec | Fixed               | Not Used            | Not Used                |        |
|   | 3.                                           | Not  | Used     | Proof C1B                                                 | Not           | Us                                  | ed                        | FailC1B        | B               | Not Used         | Not U:     | sed  | Not Use                     | 1                     | Not               | Used               | Not Used        | Not Usec | None                | Not Used            | Not Used                |        |
|   | 4.                                           | Not  | Used     | Proof C2B                                                 | Not           | Us                                  | ed                        | FailC2B        | B               | Not Used         | Not U:     | sed  | Not Use                     | 1                     | Not               | Used               | Not Used        | Not Usec | None                | Not Used            | Not Used                |        |

## 7.1. Heat pump Units

You can now have one reverse valve relay output per suction group. Before the only two options were, reverse valve relay for the whole unit or reverse valve relay for each compressor circuit. Now the third option allows reverse valve per suction group, ire tandem compressor share reverse valve relay.



|   |              |     |           |                |               |               |                   |                   | Relay                       | Output                   | nformation Scre | een     |
|---|--------------|-----|-----------|----------------|---------------|---------------|-------------------|-------------------|-----------------------------|--------------------------|-----------------|---------|
|   | Poir<br>Numb |     | Name      | Slide<br>Mult. | Slide<br>Div. | Slide<br>Off. | Design<br>Suc.PSI | Design<br>Dis.PSI | Nominal<br>Tonnage(of Step) | EXV Start<br>(When Lead) | Туре            | EX<br>A |
| ► | M-1          |     | Blower    | —              | —             | —             | —                 | —                 |                             |                          | Standard        |         |
|   | M-2          |     | Comp1A    |                |               |               |                   |                   | 0                           | 40                       | Step w\ EXV     |         |
|   | M-3          |     | HGBP      | —              | —             | —             |                   |                   | —                           | —                        | Standard        |         |
|   | M-4          | ••• | Sys1Valve | —              | —             | —             |                   |                   | —                           | —                        | Standard        |         |
|   | M-5          |     | Comp1B    |                |               | —             |                   |                   |                             |                          | Standard        |         |
|   | M-6          |     | SPAREM-6  | —              |               | —             |                   |                   |                             |                          | Standard        |         |
|   | M-7          | ,   | Comp2A    |                |               | —             |                   |                   | 0                           | 40                       | Step w\ EXV     |         |
|   | M-8          | ••• | Sys2Valve |                |               | —             |                   |                   |                             |                          | Standard        |         |
|   | M-9          |     | Comp2B    |                |               |               |                   |                   |                             |                          | Standard        |         |
|   | M10          |     | SPAREM-10 | —              | —             | —             | —                 | —                 |                             |                          | Standard        | _       |

3. For Heat pump units – Setpoint #159 controls what type of Post Defrost Pump down logic is performed. If setpoint #159 "TYPE" field is not equal to "TARGET" type a special post def pump down logic is performed. Special Post Def pump down works as follows:

- a. Compressor relays are turned off for X time (X is the value of setpoint #62 "Pmp Dwn Dely".
- b. Reverse Valve relay is on for the first 10 seconds, then it turned off.
- c. After the pump down time delay:

\* Compressor relays comes back on.

\*If VFD cmp speed goes to 30% (or setpoint #158 low zone – if #158 is a "Target" type)

\*After 10 seconds compressor speed goes to 50% (or setpoint #158 setback value).

\*After 25 seconds compressor state goes back to normal – recip comp goes back to state prior to defrost, system go to holding.

#### Normal Post Pump down works as follows:

Liquid line solenoid relays are closed, EXV off and compressor pumps down, Once pump down suction pressure value is reached, or max time delay, the compressor:

- a. if setpoint #162 (new feature just added) is a "Target" type the compressor goes to anti-cycle.
- b. else compressor goes back to run state.

- 4. For Tandem or Trio compressor (multi compressor on same suction group) forced all compressors running into defrost state, once one compressor wants to defrost. And if compressor in suction group is off, do not allow it to start. Wait for the defrost to finish before stating any more compressor on the suction group.
- 5. If compressor was in defrost state and run/stop was placed in the stop mode, the defrost would have to finished before the compressor would stop. Now the defrost is stopped and the compressor will go off quickly.

| 158 | DEF TRIG TMP | SETPOINT | If a defrost option has been specified and either coil #1 or coil #2 temperature is less than or equal to this setpoint a defrost cycle will be started if sufficient time has elapsed since the last defrost.                                                                                                                                                                    |
|-----|--------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 159 | DEF TRIG CYC | SETPOINT | Target - If the setpoint type = "TARGET" type, then normal post defrost<br>pump down occurs, else if = "TARGET" type then special post def<br>pump down is perform. The comp is turned off for time setup in the<br>setpoint #62 "Pmp Dwn Dlay" value field and Cmp VFD spd is set to<br>30% for 10 second, then 50% for 15 seconds, then cmp is set back to<br>normal operation. |
| 162 | DEF TERM DEL | SETPOINT | The length of time in minutes of the defrost cycle.<br>Target - If the setpoint type = 'Target' type, the comp goes to anticycle                                                                                                                                                                                                                                                  |

# **Chapter - 8. Humidification Section** (Condenser Info):

The humidification function is selected in the Condenser Info window. Its purpose is to add humidity to an area. Types of humidification are Not Used, Evaporator or Steam/Mist.

Setpoints:

If humidification function is active then set points #35, #36, #134. #135 #189 are used.

| 35  | Humidity Target        | TARGET | Required if Humidity option is specified as other<br>than<br>'Not Used'.<br>Value: Humidity target.<br>Safety time: Not used<br>High zone: added to value to create the top of                                                                                                                                             |
|-----|------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                        |        | zone.<br>Lo zone: subtracted from value to create the bot-<br>tom of zone.                                                                                                                                                                                                                                                 |
|     |                        |        | Night setback: if the control value is greater than<br>the value plus the night setback, the humidity<br>control will be off.                                                                                                                                                                                              |
| 36  | Humidity Adjustment    | DELAY  | Required if Humidity option is specified as other<br>than<br>'Not Used'.<br>Value: Maximum adjustment to humidifier valve.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.                                                                            |
| 134 | Humidity Damper Target | TARGET | Required if Humidity option is specified as other<br>than<br>'Not Used' and a damper has been specified.<br>Value: Humidity Damper target.<br>Safety time: Not used<br>High zone: added to value to create the top of zone.<br>Lo zone: subtracted from value to create the bottom<br>of zone.<br>Night setback: Not used. |

| 135 | Humidity Damper Adjust-<br>ment | DELAY | Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening<br>percentage that can be made at one time. |
|-----|---------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 189 | Humidification Fault            | ALARM | Used for alarm message when the humidification<br>sensor fault has been on for a time greater than<br>the value in the safety time cell. This alarm will not<br>generate a lockout or turn off any of the humidifica-<br>tion points.     |

## 8.1. Type of Humidification

Specify the type of humidification:

Evaporator can be active in any mode.

Steam/Mist, can only be active in either Vent Only or Heating mode.

Not Used, no humidification is available.

## 8.2. Control with Cooling

These options are only available with Evaporator type of humidification is selected. They have not been implemented at this time. If Evaporator type is selected then humidification can be active with all stages of cooling.

#### 8.3. Humidification Control

Specify control information:

Enable RO, this relay will be turned on if humidification is active.

MOD Valve AO, if VFD is to be modulated, select analog output.

Humidification Fault SI, fault indicator must be a digital input.

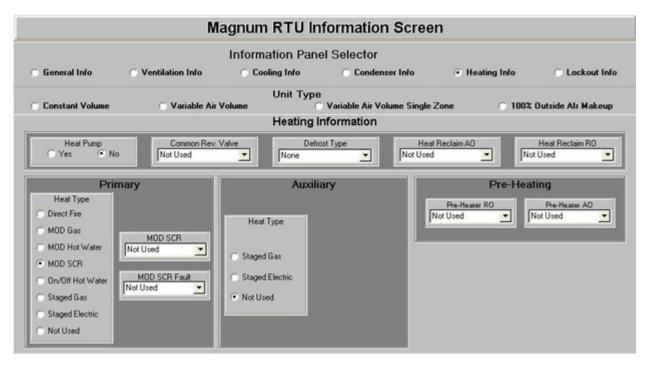
Control Humidification SI, sensor that will determine if humidification is needed.

## 8.4. Damper Control

If a damper is associated with the humidification function specify control information:

Damper RO, damper relay is not used.

Number of Damper RO's, not implemented.


Damper AO, if VFD is to be modulated, select analog output.

Damper Control SI, sensor that will determine Damper AO modulation.

#### 8.5. Control Sequence

If the is not in a lockout state, the humidification options will be checked. Relays will be turned on and analog outputs will be modulated based upon the associated set points.

# Chapter - 9. Select Heating Info (Not Heat Pump)



The RTU unit heating consists of primary and auxiliary heat. Not all types of heating are supported in the auxiliary heat stage. Select the type for the primary, the options in auxiliary will be adjusted and only show the allowable options.

Before auxiliary heating is allowed; primary must be at its maximum.

Above example uses MOD SCR (variable electric heat) for primary and auxiliary has 12 stages of fixed electric heat. Before any stages of fixed heat can be turned on the SCR must be at 100%. Once auxiliary heat begins and the heat requirement decreases all fixed electric heat must be must be turned off (auxiliary is off) before the SCR will be varied. If the fixed stages of electric must be on for minimum time this value is set up in the ROs information screen.

# **Chapter - 10. Select Heating Info (Heat Pump)**

If the unit is a heat pump, Heat Pump option set to Yes; when heating is required the heat pump will be placed in heating mode and act as the first stage of heating. This will remain as the first stage as long as the ambient temperature is above setpoint #133. If additional heating is required the system will use the auxiliary heat.

|                                      |                                  | Heating Informa       | tion           |              |                            |
|--------------------------------------|----------------------------------|-----------------------|----------------|--------------|----------------------------|
| Heat Pump<br>Yes ON                  | o Common Rev. Valve              | Defrost Type     None | ► Heat Recl    |              | Heat Reclaim RO<br>ot Used |
| Aux                                  | kiliary                          |                       |                | Pre-Hea      | iting                      |
| Heat Type<br>Direct Fire             | MOD SCR<br>Not Used              |                       | P              | re-Heater RO | Pre-Heater AO<br>Not Used  |
| 🔿 MOD Gas                            | MOD SCR Fault                    |                       |                |              |                            |
| MOD Hot Water                        | Starting RO                      |                       | Pre-H<br>Not U |              | f of Pre-Heating Stages    |
| MOD SCR                              | Not Used -                       |                       |                |              |                            |
| <ul> <li>Split Manifold</li> </ul>   | Number of Stages                 |                       | <u>.</u>       |              |                            |
| <ul> <li>On/Off Hot Water</li> </ul> |                                  |                       |                |              |                            |
| <ul> <li>Staged Heat</li> </ul>      | Starting Stage Fault<br>Not Used |                       |                |              |                            |
| Not Used                             | Number of Stage Faults           |                       |                |              |                            |
|                                      |                                  |                       |                |              |                            |

The emergency heating can only be used if the heat pump is no longer active due to low ambient temperature or a failure.

# Chapter - 11. Select Heating Info (Mod Gas)

| N                                                                                                                                                                                                                                                                                                                                                                             | Magnum RTU Information Screen                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 🗇 General Info 🔗 Ventilation Info                                                                                                                                                                                                                                                                                                                                             | Information Panel S                                                 | Selector<br>© Condenser Info              | <ul> <li>Heating Info</li> <li>Lockout Info</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| C Constant Volume 📀 Variable Ai                                                                                                                                                                                                                                                                                                                                               | Volume Unit Type                                                    | ariable Air Volume Single Zor<br>Armation | ne 🕜 100% Outside Alr Makeup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Heat Pump Common Rev<br>C Yes O No Not Used                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                           | Claim AD Heat Reclaim RD Not Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Heat Type       MOD Gas Valve         Direct Fire       Not Used         MOD Gas       MOD Gas Fault         MOD Hot Water       MOD Gas Fault         MOD SCR       Number of Valves         On/Off Hot Water       Number of Valves         Staged Gas       MOD Gas Starting RO         Staged Electric       Ignition Indicator         Not Used       Ignition Indicator | Auxiliary<br>Heat Type<br>Staged Gas<br>Staged Electric<br>Not Used |                                           | Pre-Heating<br>Pre-Heater A0<br>Used  Vised  Vis |  |  |  |  |

The above Heat Type selection is for MOD Gas. This requires:

Two analog outputs that match the number of mod gas valves indicated.

|     |           | 1        |    |
|-----|-----------|----------|----|
| 2-1 | Mod Gas 1 | Standard | NO |
| 2-2 | Mod Gas 2 | Standard | NO |

Five stages, two associated with the gas valves these are 2 stage fans and 3 associated with the number of staged gas steps. The following relay outputs are required:

| 2-1 | <br>CM1 W3 low | <br> | <br> | <br> | <br>Standard |
|-----|----------------|------|------|------|--------------|
| 2-2 | <br>CM1 W2 hi  | <br> | <br> | <br> | <br>Standard |
| 2-3 | <br>CM 2W3 low | <br> | <br> | <br> | <br>Standard |
| 2-4 | <br>CM 2W2 hi  | <br> | <br> | <br> | <br>Standard |
| 2-5 | <br>CM 3       | <br> | <br> | <br> | <br>Standard |
| 2-6 | <br>CM 4       | <br> | <br> | <br> | <br>Standard |
| 2-7 | <br>CM 5       | <br> | <br> | <br> | <br>Standard |

The raise in TEMP required to prove ignition is now based upon the lowest TEMP recorded during the ignition sequence.

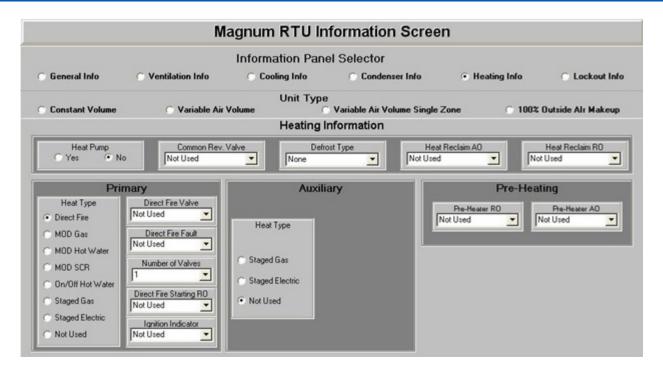
| #   | Name                                                                                                                                                                | Туре     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 184 | Mod Gas Adjustment<br>(This setpoint is also used with<br>Direct Fire type of heating and<br>Modulating SCR.)                                                       | DELAY    | Adjustments for mod gas valve and minimum and maximum valve<br>openings.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that<br>can be made at one time.                                                                                                                                                                                                                                                                                           |
| 185 | Mod Gas multiplier & divisor<br>& time that the gas stage must<br>be off<br>(This setpoint is also used with<br>Direct Fire type of heating and<br>Modulating SCR.) | DELAY    | <ul> <li>-The value is the multiplier.</li> <li>-The time cell is the minimum time that the gas stage must be in the TIME OFF state. This is similar to an anti-cycle timer.</li> <li>-Min Opening is not used.</li> <li>-Max Opening is not used</li> <li>-Max Adj is the divisor used to fine tune the adjustments</li> </ul>                                                                                                                                                                                                                                                                                 |
| 186 | Mod Gas ignition<br>(This setpoint is also used<br>with Direct Fire type of<br>heating)                                                                             | LOCKOUT  | Only used if the Ignition Indicator sensor is not used.<br>-The Value is the increase in heat that is needed to prove<br>that ignition has been successful. If the control tempera-<br>ture decreases while waiting for ignition, the heat in-<br>crease will be based on this value.<br>-The time field contains the time to wait for ignition, if<br>time expires then mark this stage off line and generate an<br>error message (only one error message will be generated<br>between lockout reset).<br>-The time to ignore safety cell contains the time that the<br>step will remain in the warm up state. |
| 187 | Mod Gas Fan switch to high<br>speed (not used with Direct<br>Fire type of heating)                                                                                  | SETPOINT | Determines when the system will switch from low fan<br>speed to high fan speed.<br>When the mod gas opening is greater than value of this<br>setpoint plus the value in setpoint #184 the high speed fan<br>will be turned on.<br>With MOD GAS heating types when warm up has been sat-<br>isfied, use high zone of set point #187 as the valve opening<br>if is greater than 0 else use the minimum valve opening in<br>set point #184.                                                                                                                                                                        |

(With all types of MOD GAS & SCR heating types can handle up to 30 fixed stages.)

(With MOD GAS heating types when warm up has been satisfied, use High zone to Setpoint #187 "Mod Gas Fan switch to high speed (not used with Direct Fire type of heating)" as the value opening if is greater than 0, else use the minimum valve opening is Setpoint #184 "Mod Gas Adjustment".)

## **Chapter - 12. Mod Gas Capacity Heating States**

- 1. NOT USED, indicates that there is no heating steps.
- 2. OFF HIGH AMB, the heating has been disabled due to high ambient. Refer to setpoint #133.
- 3. DISABLED, all heating stages have been disabled.
- 4. OFF, all heating stages are off.
- 5. LOADING, additional heating is required. The system is increasing capacity.
- 6. UNLOADING, less heating is required. The system is decreasing capacity.
- 7. HOLDING, heating is within the heating zone.
- 8. **HOLD FOR IGN**, this state is only for MOD GAS type of heating. An additional step of heating has been turned on and waiting for a rise in control heating temperature. Refer to setpoints #186.
- 9. **HOLD MG START**, this state is only for MOD GAS type of heating. A modulating valve step has been started with a valid ignition; now wait for warm up period. Refer to setpoint #186.
- 10. LOADED, all heating stages have been turned on.
- 11. UNLOADED, all heating stages have been turned off.
- 12. OFF NO FLOW, all heating stages have been turned off due to no flow.


## Chapter - 13. Mod Gas Stage Heating States

- 1. **NOT USED**: step is not used.
- 2. MOD OFF READY: MOD GAS valve step is ready to be activated.
- 3. MOD OFF TIME: MOD GAS valve step is off due to time from when the step was turned off.

| #   | Name                                                                                                                                                                                               | Туре  | Description                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 185 | Mod Gas multiplier &<br>diviMod Gas multiplier &<br>divisor & time that the gas<br>stage must be off<br>(This setpoint is also used<br>with Direct Fire type of<br>heating and Modulating<br>SCR.) | DELAY | <ul> <li>-The value is the multiplier.</li> <li>-The time cell is the minimum time that the gas stage must<br/>be in the TIME OFF state. This is similar to an anti-cycle<br/>timer.</li> <li>-Min Opening is not used.</li> <li>-Max Opening is not used</li> <li>-Max Adj is the divisor used to fine tune the<br/>adjustments.</li> </ul> |

- 4. **MOD ON**; MOD GAS valve step is on. The associated analog output will be modulated.
- 5. **MOD HOLD IGN**: MOD GAS valve step has been initiated but prove of a valid ignition has not yet occurred. Refer to setpoint #186.
- 6. **MOD HLD WARMUP**: MOD GAS valve step has a valid ignition and is now in the warm up state. Refer to setpoint #186.
- 7. STEP OFF READY: MOD GAS fixed step is ready to be activated.
- 8. **STEP OFF TIME**: MOD GAS fixed step is off due to time from when the step was turned off. Refer to setpoint #186.
- 9. **STEP ON**: MOD GAS fixed step is on.
- 10. **STEP HOLD IGN**: MOD GAS fixed step has been initiated but proof of a valid ignition has not yet occurred. Refer to setpoint #186.
- 11. **SAFETY NO IGN**: MOD GAS valve or fixed step was initiated but time expired prior to proof of a valid ignition. Refer to setpoint #186.
- 12. LOCKOUT NO IGN: MOD GAS valve or fixed step this state is not used at this time.
- 13. **OFF**: Not a MOD GAS step, it is off.
- 14. LOADING: Not a MOD GAS step, it is loading.
- 15. UNLOADING: Not a MOD GAS step, it is unloading.
- 16. LOADED: Not a MOD GAS step, it is fully loaded.
- 17. HOLDING: Not a MOD GAS step, it is holding.
- 18. **UNLOADED**: Not a MOD GAS step, it is fully unloaded.

# Chapter - 14. Select Heating Type (Direct Fire)



This type of heating is similar to the MOD Gas type. Both cause an ignition to occur and wait for verification by an increase in the control temperature.

The above selection of Direct Fire requires one valve, Analog Output, and one Relay Output. If the Ignition Indicator is specified it must point to a digital input which will be on to indicate proof of ignition. If it is not used then the rise in temperature will be used as proof of ignition.

The raise in TEMP required to prove ignition is now based upon the lowest TEMP recorded during the ignition sequence.

| #   | Name                                                                                       | Туре  | Description                                                                        |
|-----|--------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------|
| 184 | Mod Gas Adjustment                                                                         | DELAY | Adjustments for mod gas valve and minimum and maximum valve openings.              |
|     |                                                                                            |       | Value: Minimum adjustment.                                                         |
|     | (This setpoint is also used<br>with Direct Fire type of<br>heating and Modulating<br>SCR.) |       | Safety time: Delay between adjustments.                                            |
|     |                                                                                            |       | MIN VFD Opening: Minimum opening.                                                  |
|     |                                                                                            |       | MAX VFD Opening: Maximum opening.                                                  |
|     |                                                                                            |       | MAX ADJ: Maximum adjustment to the opening percentage that can be made at one time |
|     |                                                                                            |       |                                                                                    |

| 185 | Mod Gas multiplier & divisor & time that the gas                    | DELAY   | -The value is the multiplier.                                                                                                                                                                                          |
|-----|---------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | stage must be off                                                   |         | -The time cell is the minimum time that the gas stage<br>must be in the TIME OFF state. This is similar to an anti-<br>cycle timer.                                                                                    |
|     | (This setpoint is also used                                         |         | -Min Opening is not used.                                                                                                                                                                                              |
|     | with Direct Fire type of                                            |         | -Max Opening is not used                                                                                                                                                                                               |
|     | heating and Modulating                                              |         | -Max Adj is the divisor used to fine tune the                                                                                                                                                                          |
|     | SCR.)                                                               |         | adjustments.                                                                                                                                                                                                           |
| 186 | Mod Gas ignition                                                    | LOCKOUT | Only used if the Ignition Indicator sensor is not used.                                                                                                                                                                |
|     | (This setpoint is also used<br>with Direct Fire type of<br>heating) |         | -The Value is the increase in heat that is needed to<br>prove that ignition has been successful. If the control<br>temperature decreases while waiting for ignition, the<br>heat increase will be based on this value. |
|     | Treating                                                            |         | -The time field contains the time to wait for ignition,<br>if time expires then mark this stage off line and gener-<br>ate an error message (only one error message will be<br>generated between lockout reset).       |
|     |                                                                     |         | -The time to ignore safety cell contains the time that the step will remain in the warm up state.                                                                                                                      |

## **Chapter - 15. Direct Fire Capacity States**

- 1 NOT USED, indicates that there is no heating steps.
- 2. OFF HIGH AMB, the heating has been disabled due to high ambient. Refer to setpoint #133.
- 3. **DISABLED**, all heating stages have been disabled.
- 4. OFF, all heating stages are off.
- 5. LOADING, additional heating is required. The system is increasing capacity.
- 6. UNLOADING, less heating is required. The system is decreasing capacity.
- 7. HOLDING, heating is within the heating zone.
- 8. **HOLD FOR IGN**, this state is only for MOD GAS type of heating. An additional step of heating has been turned on and waiting for a rise in control heating temperature. Refer to setpoints #186.
- 9. LOADED, all heating stages have been turned on.
- 10. UNLOADED, all heating stages have been turned off.
- 11. OFF NO FLOW, all heating stages have been turned off due to no flow.

## **Chapter - 16. Direct Fire Stage Heating States**

- 1. NOT USED: step is not used.
- 2. MOD OFF READY: MOD GAS valve step is ready to be activated.
- 3. **MOD OFF TIME**: MOD GAS valve step is off due to time from when the step was turned off. Refer to setpoint #186.
- 4. MOD ON; Direct Fire GAS valve step is on. The associated analog output will be modulated.
- 5. **MOD HOLD IGN**: Direct Fire GAS valve step has been initiated but prove of a valid ignition has not yet occurred. Refer to setpoint #186.
- 6. STEP OFF READY: Direct Fire GAS fixed step is ready to be activated.
- 7. **STEP OFF TIME**: Direct Fire GAS fixed step is off due to time from when the step was turned off. Refer to setpoint #186.
- 8. **STEP ON**: Direct Fire GAS fixed step is on.
- 9. **STEP HOLD IGN**: Direct Fire GAS fixed step has been initiated but prove of a valid ignition has not yet occurred. Refer to setpoint #186.
- 10. **SAFETY NO IGN**: Direct Fire GAS value or fixed step was initiated but time expired prior to proof of a valid ignition. Refer to setpoint #186.
- 11. LOCKOUT NO IGN: Direct Fire GAS valve or fixed step this state is not used at this time.
- 12. OFF: Not a Direct Fire GAS step, it is off.

Heating status is display both on the MCS Magnum display and by MCS Connect.

## **Chapter - 17. Pre Heater:**

The pre heater can be used to pre heat the incoming air based upon Setpoint #129. Either or both a relay or analog output can be specified. If analog output then Setpoint #130 will be used for adjustments.

## **17.1. PRE HEATING:**

The purpose of the pre heating function is to pre heat the incoming air if needed.

The function is setup in the Pre Heating section under the Heating Information window, accessed by the Heating Info button.

**Pre-Heater RO**: Select the first pre-heater relay. Multiple steps are supported but they must be consecutive relays.

**Number of Steps**: Number from 0 to 12. If 0, then the pre-heating function is not active.

Pre-Heater AO: Select the analog output that is to be modulated. This may be 'Not Used'.

**Control Sensor:** Select the control sensor input that will be used to determine amount of heating that is required. This is usually outside temperature.

## 17.1.1 MCS Configuration Setup

The function is setup in the Pre Heating section under the Heating Information window, accessed by the Heating Info button.

Pre-Heater RO: Select the first pre-heater relay. Multiple steps are supported but they must be consecutive relays.

Number of Steps: Number from 0 to 12. If 0, then the pre-heating function is not active.

Pre-Heater AO: Select the analog output that is to be modulated. This may be 'Not Used'.

Control Sensor: Select the control sensor input that will be used to determine amount of heating that is required. This is usually outside temperature.

## 17.1.2 Setpoints

#### The following Setpoints must be setup for the pre-heating function.

**Setpoint #44, PRE-HEAT MUL/DIV (type = Target):** Purpose is to enable fine tuning the adjustment to both the delay timer and the AO opening.

- Value: multiply adjustment for the AO opening
- Safety time is not used
- High Zone cell is the multiply adjustment for the time delay between making adjustments
- Low Zone cell is the divisor adjustment for the time delay between making adjustments
- Night Setback cell is the divisor adjustment for the AO opening

**Setpoint #170, PRE-HEAT TARGET (type = Target):** Purpose is to develop the control zone for heating the incoming air.

- Value: target of the pre-heat function
- Safety time is not used
- High Zone cell is added the value to produce the high zone
- Low Zone cell is subtracted from the value to produce the low zone
- Night Setback cell is not used

**Setpoint #179, PRE-HEAT ADJUSTMENT (type = Delay):** Purpose is provide adjustment limits and minimum and maximum AO settings.

- Value: minimum adjustment that can be made
- Safety time is the delay between adjustments.
- MIN VFD Opening: this is the minimum AO setting
- MAX VFD Opening: this is the maximum AO setting
- MAX VFD Adjustment: this is the maximum adjustment that can be made

#### 17.2. Control Zone

The control is developed based upon Setpoint #170. The AO will be modulated and pre-heating relays will be turned on or off to maintain the control temperature within this zone. When within this zone the delay counter will not be decremented.

#### **17.3. Delay Timer**

The delay timer is initially set to the safety time of Setpoint #179. The delay timer is decremented based upon the difference between the control temperature and its target (Setpoint #170) this value is then adjusted by the values in Setpoint #44. The maximum decrement is 10 that can be made each second.

#### 17.4. AO Setting Adjustment

The AO adjustment is based upon the difference between the control temperature and its target (Setpoint #170) this value is then adjusted by the values in Setpoint #44. This value is then checked for its minimum and maximum adjustments based on Setpoint #179.

Adjustments to the AO setting will be made when the delay timer reaches zero. The delay counter will then be set to safety time of Setpoint #179.

The actual AO setting will be limited by its minimum and maximum values in Setpoint #179.

#### **17.5. Pre-Heat Sequence of Operations**

- If the unit is not in a normal run state, the pre heat will be off.

- Once the control temperature is below the control zone the pre heat sequence will begin. The first relay will be turned on and the AO setting will be at its minimum value. The AO setting will be increased to its maximum value (Setpoint #179); at this point the next step of heating will be turned on if available and the AO setting will be set to its minimum value. The AO setting will be increased until it reaches the maximum value. Once all heating steps are on then the AO setting will remain at its maximum value.

- When the control temperature is within the control zone there will be no adjustments.

- When the control temperature is above the control zone the AO setting will be decreased to its minimum value (Setpoint #179); at this point a heating step will be turned off if available and the AO setting will be set to its maximum value. The AO setting will be decreased until it reaches the minimum value. Once all heating steps are off the AO setting will be zero. The pre heat will remain off until the control temperature is below the control zone.

#### **17.6. Pre-Heat OFF**

When the pre heat is off, all steps will be off and the AO setting will be zero. Note, this function will not be enabled if the system is in either the cooling or dehumidification mode.

# Chapter - 18. Split Manifold Heating

This is similar to modulating gas except there will be 4 RO's tied to each gas valve. The first 2 RO's are the 2 stages for the gas valve. The sequence for this type of heating will be:

| Μ                                                                                                                                                                                                                                                                                                           | lagnum RTU Information                                                                         | Screen                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------|
| C General Info C Ventilation Info                                                                                                                                                                                                                                                                           | Information Panel Selector<br>Cooling Info Condense<br>Unit Type<br>Volume C Variable Air Volu |                                          |
|                                                                                                                                                                                                                                                                                                             | Heating Information                                                                            | Jine Single Zone 1004 Outside Alt Makeup |
| Heat Pump       Common Rev.         Yes       No         Primary         Heat Type         Direct Fire         MOD Gas         MOD Hot Water         MOD SCR         Split Manifold Fault         Split Manifold Fault         On/Off Hot Water         Staged Gas         Staged Electric         Not Used | None     None     Auxiliary     Starting R0     Heat Type     Number of Stages                 |                                          |

Heat Stage 1A Heat Stage 1B CombMtr1Lo CombMtr1Hi

In the Magnum RTU screen under the heating info screen select Split Manifold as your primary heat. It needs to be setup as follows.

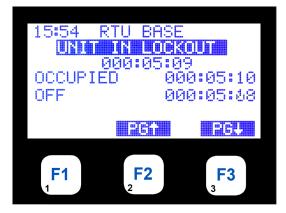
-In the "Split Manifold Valve" cell select the first gas valve.

- -In the "Split Manifold Fault" cell select the SI if there is one for the heater fault.
- -In the "Number of Valves" cell select the number of modulating gas valves you have.
- -In the "Split Mini Starting RO" cell you will select the first RO in the sequence.

-In the "ignition Indicator" cell select the SI if there is one.

| #   | Name                                                                | Туре     | Description                                                                                                                                                                                                            |  |  |  |
|-----|---------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 184 | Mod Gas Adjustment                                                  | DELAY    | Adjustments for mod gas valve and minimum and maxi-<br>mum valve openings.                                                                                                                                             |  |  |  |
|     | (This setpoint is also used                                         |          | Value: Minimum adjustment.                                                                                                                                                                                             |  |  |  |
|     | with Direct Fire type of                                            |          | Safety time: Delay between adjustments.                                                                                                                                                                                |  |  |  |
|     | heating and Modulating SCR.)                                        |          | MIN VFD Opening: Minimum opening.                                                                                                                                                                                      |  |  |  |
|     |                                                                     |          | MAX VFD Opening: Maximum opening.                                                                                                                                                                                      |  |  |  |
|     |                                                                     |          | MAX ADJ: Maximum adjustment to the opening percentage that can be made at one time                                                                                                                                     |  |  |  |
| 185 | Mod Gas multiplier &                                                | DELAY    | -The value is the multiplier.                                                                                                                                                                                          |  |  |  |
|     | divisor & time that the gas<br>stage must be off                    |          | -The time cell is the minimum time that the gas stage must<br>be in the TIME OFF state. This is similar to an anti-cycle<br>timer.                                                                                     |  |  |  |
|     | (This setpoint is also used                                         |          | -Min Opening is not used.                                                                                                                                                                                              |  |  |  |
|     | with Direct Fire type of<br>heating and Modulating                  |          | -Max Opening is not used                                                                                                                                                                                               |  |  |  |
|     | SCR.)                                                               |          | -Max Adj is the divisor used to fine tune the adjustments.                                                                                                                                                             |  |  |  |
| 186 | Mod Gas ignition                                                    | LOCKOUT  | Only used if the Ignition Indicator sensor is not used.                                                                                                                                                                |  |  |  |
|     | (This setpoint is also used<br>with Direct Fire type of<br>heating) |          | -The Value is the increase in heat that is needed to prove<br>that ignition has been successful. If the control temperature<br>decreases while waiting for ignition, the heat increase will<br>be based on this value. |  |  |  |
|     |                                                                     |          | -The time field contains the time to wait for ignition, if time<br>expires then mark this stage off line and generate an error<br>message (only one error message will be generated be-<br>tween lockout reset).       |  |  |  |
|     |                                                                     |          | -The time to ignore safety cell contains the time that the step will remain in the warm up state.                                                                                                                      |  |  |  |
| 187 | Mod Gas Fan switch to high speed (not used with Direct              | SETPOINT | Determines when the system will switch from low fan spe to high fan speed.                                                                                                                                             |  |  |  |
|     | Fire type of heating)                                               |          | When the mod gas opening is greater than value of this set-<br>point plus the value in setpoint #184 the high speed fan will<br>be turned on.                                                                          |  |  |  |
|     |                                                                     |          | With MOD GAS heating types when warm up has been satis-<br>fied, use high zone of set point #187 as the valve opening if<br>is greater than 0 else use the minimum valve opening in set<br>point #184.                 |  |  |  |

RO "Heat Stage 1A" will turn on and the gas valve will be set to 100% for ignition. Once ignition is proven the gas valve will go through a warmup period. After the warmup period the gas valve then gets set to a certain value (see set points). The gas valve will then modulate as usual. Once the gas valve reaches the value in the MAX VFD Opening cell of Set Point #184 the RO "Heat Stage 1B" will then turn on and the gas valve will go through its ignition and warmup sequence again. If there is a 2nd stage of Split Manifold Heating then the sequence will continue to stage 2.


# Chapter - 19. Magnum Keypad And Display

All Magnum LCD displays are identical to the displays documented in the Magnum Version 17 Manual with the exception when the Status is selected from the Main Menu screen.

When the status is selected a series of RTU screens can be scrolled through which provide the RTU status. When the Cooling status display is reached, this is the same as the Unit status screen for HVAC units. This is followed by the individual compressor information screens. These screens can be scrolled by using the F2 (Page up) and F3 (Page down) buttons.

All screens consist of up to 6 lines of data. Line 1 will always contain the time (hours: minutes) and the screen heading.

## 19.1. RTU Base Screen



#### DESCRIPTION

Line 1: Hour: Minute RTU Line 2: RTU STATE Line 3: Time in current state Line 4: STATUS of the building time (Hour:Minute:Second) Line 5: MODE & time (Hour:Minute:Second)

#### **RTU STATE can be:**

- 1. PowerUpDelay
- 2. MCS IO FAILED
- 3. UNIT IN LOCKOUT
- 4. OFF SMOKE ALARM
- 5. OFF RUN/STOP
- 6. EVAP FAN ONLY
- 7. COOLING STATE
- 8. HEATING STATE
- 9. DEHUMID STATE
- 10. SWITCHING STATE

#### **RTU STATUS can be:**

- 1. OCCUPIED
- 2. UNOCCUPIED
- 3. OVER RIDE

#### RTU MODE can be:

- 1. COOLING MODE
- 2. HEATING MODE
- 3. DEHUMIDITY
- 4. OFF

## **19.2. RTU PRIMARY Heating**

(Only displayed if primary heating is used)



Heating STATE can be:

- 1. HEAT NOT USED
- 2. HEAT OFF hiAMB
- 3. HEAT DISABLED
- 4. HEAT IS OFF
- 5. HEAT LOADING
- 6. HEAT UNLOADING
- 7. HEAT HOLDING
- 8. HEAT LOADED
- 9. HEAT UNLOADED

#### Heating stage STATE can be:

- 1. NOT USED
- 2. OFF
- 3. LOADING
- 4. UNLOADING
- 5. LOADED
- 6. HOLDING
- 7. UNLOADED

#### Type of Heating can be:

- 1. STAGE GAS
- 2. STAGE ELEC
- 3. HOT WATER (on or off)
- 4. MOD GAS
- 5. MOD WATER
- 6. MOD SCR
- 7. NOT USED

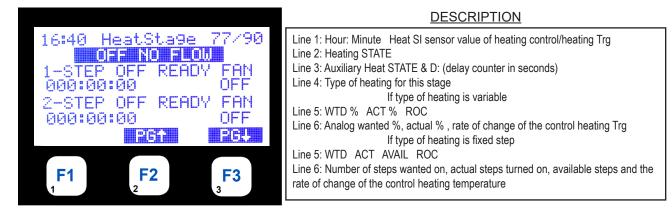
#### DESCRIPTION

- Line 1: Hour: Minute Heat SI sensor value of heating control/heating Trg
- Line 2: Heating STATE
- Line 3: Primary Heat STATE & D: (delay counter in seconds)
- Line 4: Type of heating for this stage

If type of heating is variable

Line 5: WTD % ACT % ROC

Line 6: Analog wanted %, actual % and the rate of change of the control heating temperature


If type of heating is fixed step

Line 5: WTD ACT AVAIL ROC

Line 6: Number of steps wanted on, actual steps turned on, available steps and the rate of change of the control heating temperature


## **19.3. RTU AUXILIARY Heating**

(Only displayed if auxiliary heating is used)



## **19.4. RTU Ventilation Info**

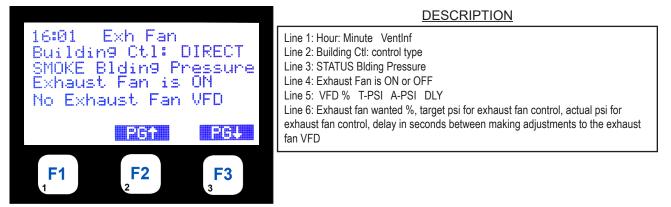
(Screen provides information on the supply fan control and on the heat wheel)



#### **DESCRIPTION**

Line 1: Hour: Minute SplyFan Line 2: Supply Ctl: control type Line 3: Supply Fan is ON or OFF Line 4: VFD % T-PSI A-PSI DLY (display if VFD else 'No Supply Fan VFD') Line 5: Supply fan wanted %, target psi for supply fan control, actual psi for supply fan control, delay in seconds between making adjustments to the supply fan VFD (line will be blank if no VFD) Line 6: Wheel STATUS

#### Control type can be:

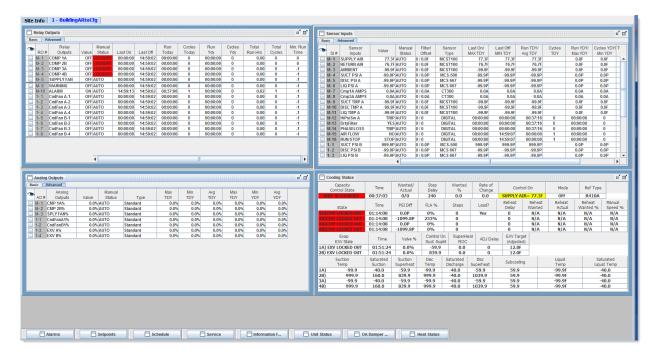

- 1. Always On
- 2. Cycle On
- 3. 1Zone VAV (not implemented at this time)
- 4. Not Used

## (Heat) Wheel STATUS can be:

- 1. OFF
- 2. ON
- 3. DEFRST
- 4. NONE

## **19.5. RTU Ventilation Info**

(Screen provides information on the exhaust fan/building control)




#### Control type can be:

- 1. DIRECT, if pressure is above control zone increase speed of the exhaust fan VFD; if below then decrease speed.
- 2. REVERSE, if pressure is above control zone decrease speed of the exhaust fan VFD; if below then increase speed.

## Chapter - 20. Mcs Connect Displays

MCS Connect will display the RTU status. The following is a full screen of an RTU unit that is in the dehumidification mode. Note the only difference between the HVAC unit screens is in the status section where additional buttons are available.



| Capacity<br>Control State | Time     | Wanted/<br>Actual | Step<br>Delay | Wanted<br>%       | Rate of<br>Change | Control On      |                  | On Mode          |                    |                   |
|---------------------------|----------|-------------------|---------------|-------------------|-------------------|-----------------|------------------|------------------|--------------------|-------------------|
| UNIT IN LOCKOUT           | 00:39:09 | 0/0               | 240           | 0.0               | 0.0               | SUPPLY A        | (R= 77.3F        | OFF              | R410A              |                   |
| State                     | Time     | PSI Diff          | FLA %         | Steps             | Lead?             | Reheat<br>Delay | Reheat<br>Wanted | Reheat<br>Actual | Reheat<br>Wanted % | Manual<br>Speed % |
| A)CMP LOCKED OUT          | 01:18:20 | 0.0P              | 0%            | 0                 | Yes               | 0               | N/A              | N/A              | N/A                | N/A               |
| B)CMP LOCKED OUT          | 01:18:20 | -1099.8P          | 233%          | 0                 |                   | 0               | N/A              | N/A              | N/A                | N/A               |
| A)CMP LOCKED OUT          | 01:18:20 | 0.0P              | 0%            | 0                 |                   | 0               | N/A              | N/A              | N/A                | N/A               |
| 3)CMP LOCKED OUT          | 01:18:20 | -1099.8P          | 0%            | 0                 |                   | 0               | N/A              | N/A              | N/A                | N/A               |
| Evap                      | Time     | Valve %           | Control On    | trol On SuperHeat |                   | EXV Targ        |                  |                  |                    |                   |
| EXV State                 | THIN .   | Valve /o          | Suct. Supht   | ROC               | ADJ Delay         | (Adjuste        | d) (t            |                  |                    |                   |
| A) EXV LOCKED OUT         | 01:57:42 | 0.0%              | -59.9         | 0.0               | 0                 | 12.0F           |                  |                  |                    |                   |
| B) EXV LOCKED OUT         | 01:57:42 | 0.0%              | 839.9         | 0.0               | 0                 | 12.0F           |                  |                  |                    |                   |

## 20.1. UNIT Tab:

In the first section: the RTU state, time in that state, building mode (occupied or unoccupied), time in that mode, the unit mode (heating, cooling, dehumidify) and time in unit mode.

In the second section: the evaporator (supply) fan control, the percentage opening, the delay

between adjustments, the target value and the sensor input control value.

In the third section the status of the heat wheel. This unit does not have a heat wheel.

The fourth section provides information on the exhaust fan status.

## 20.2. HEATING Tab:

| C | B Heat | t Status                |         |       |                   |              |   |               |   |                   |                   | r 🛛   |
|---|--------|-------------------------|---------|-------|-------------------|--------------|---|---------------|---|-------------------|-------------------|-------|
|   |        | Mod Gas<br>Introl State | Time    |       | nted/<br>I/Avail. | Rate<br>Chan |   | Heati<br>Targ | - | Control On        | Wanted<br>Valve % | Delay |
|   | OFF    | NO FLOW                 | 00:06:5 | 50 0/ | )/0               | 0.0          |   | 90.0          | F | SUPPLY AIR= 77.3F | 0.0%              | 45    |
|   |        | Direct Fi               | re      |       | v                 | alve %       | I | Fan           |   |                   |                   |       |

The Heating button provides the RTU heating status.

In this example the heating is off. The primary heating type Direct Fire.

## 20.3. Cooling Tab:

| Capacity<br>Control State | Time                 | Wanted/<br>Actual    | Step Delay   | Wanted %               | Rate of<br>Change | C               | ontrol On              | Mode                      | Ref Type<br>R22          |
|---------------------------|----------------------|----------------------|--------------|------------------------|-------------------|-----------------|------------------------|---------------------------|--------------------------|
| RTU DEHUMID COOL          | 144:21:52            | 6/6                  | 30           | N/A                    | 0.0               | SupAirTem       | ip= 55.0F              | DEHUMIDITY                |                          |
| State                     | Time                 | PSI Diff             | FLA%         | Steps                  | Lead?             | Reheat<br>Delay | Reheat<br>Wanted Steps | Reheat Actual<br>Steps On | Reheat<br>Wanted %       |
| 1)CMP IS RUNNING          | 72:04:44             | N/A                  | 96           | 1                      | Yes               | 5               | N/A                    | N/A                       | 1000                     |
| 2)CMP 15 RUNNING          | 72:08:57             | N/A                  | 100          | 1                      |                   | 4               | N/A                    | N/A                       | 1000                     |
| 3)CMP IS RUNNING          | 72:08:27             | N/A                  | 100          | 1                      |                   | 4               | N/A                    | N/A                       | 1000                     |
| 4)CMP IS RUNNING          | 72:04:13             | N/A                  | 96           | 1                      |                   | 0               | N/A                    | N/A                       | N/A                      |
| 5)CMP IS RUNNING          | 72:07:27             | N/A                  | 100          | 1                      |                   | 0               | N/A                    | N/A                       | N/A                      |
| 6)CMP IS RUNNING          | 72:06:57             | N/A                  | 100          | 1                      |                   | 0               | N/A                    | N/A                       | N/A                      |
| Suction<br>Temp           | Saturated<br>Suction | Suction<br>Superheat | Disc<br>Temp | Saturated<br>Discharge | Disc              |                 | Subcooling             | Liquid<br>Temp            | Saturated<br>Liquid Temp |
| 1) 111.0                  | 37.4                 | 73.6                 | 161.0        | 101.6                  | 59.4              |                 | -67.6                  | 121.0F                    | 53.4                     |
| 2) 112.0                  | 35.2                 | 76.8                 | 162.0        | 102.0                  | 60.0              |                 | -56.8                  | 122.0F                    | 65.2                     |
| 3) 113.0                  | 35.9                 | 77.1                 | 163.0        | 102.3                  | 60.7              |                 | -57.8                  | 123.0F                    | 65.2                     |
| 4) 111.0                  | 37.4                 | 73.6                 | 161.0        | 101.6                  | 59.4              |                 | -67.6                  | 121.0F                    | 53.4                     |
| 5) 112.0                  | 35.2                 | 76.8                 | 162.0        | 102.0                  | 60.0              |                 | -56.8                  | 122.0F                    | 65.2                     |
| 6) 113.0                  | 35.9                 | 77.1                 | 163.0        | 102.3                  | 60.7              |                 | -58.3                  | 123.0F                    | 64.7                     |

The Cooling tab provides the same information as the unit status for an HVAC unit.

# **Chapter - 21. RTU Operation Steps**

## 21.1. At Power Up

If the unit is not in a LOCKOUT condition, the system will determine if the supply fan can be started. If yes the fan will be started and no other functions can be initialized until flow has been established and the minimum supply startup time (setpoint #108) has passed.

## 21.2. DETERMINE BUILDING MODE

The MCS-MAGNUM will determine the building mode as Occupied, Unoccupied, Override, or Morning Warm Up. The MCS-MAGNUM can be configured to use its schedule or a sensor input to indicate occupied/unoccupied mode. The optional Morning Warm Up functions occurs once a day the first time the building mode is switched from Unoccupied to Occupied. The optional Override mode is active when the building mode is Unoccupied and someone presses the override button on the zone temperature sensor or a digital sensor input. The current building mode is indicated on the MCS-MAGNUM LCD display or in MCS-Connect's Unit Status.

## Occupied

If the building mode is Occupied the following logic applies:

- Night setback values are not applied to cooling, heating, and reheat target setpoints.
- The Outsider Air Damper is controlled by:
- Minimum position setpoint value
- Economizer when in cooling mode (optional)
- Building CO2 level (optional)
- Outside Air CFM Target (optional)
- The supply and return fans are started and their speed (optional) is control to maintain duct static.

#### Unoccupied

If the building mode is Unoccupied the following logic applies:

- Night setback values will be applied to cooling, heating, and reheat target setpoints.
- The Outside Air Damper is closed.
- The supply and return fans are stopped and only turned on when there is a need for cooling, heating or dehumidification.

## Override

If the building mode is Override the following logic applies:

- The unit run the same logic as Occupied mode
- The unit stays in the mode for time period specified by a setpoint, then the building mode is switched back to Unoccupied.

## 21.2.1 Determine Unit mode

The setting of the unit mode will enable the cooling, heating or dehumidification functions to be

executed. The setting of the control mode will be based on the control sensor for the Ventilation Mode.

#### The following modes can be indicated:

OFF

The Unit Mode will be OFF if the unit has experience a safety condition resulting in a LOCKOUT or the unit RUN/STOP indicates STOP (do not allow the system to run).

## 21.2.1.1. Cooling Mode

When the control sensor input for the Ventilation Mode is above the value of setpoint #218, "Enable Cooling", the unit mode will be set to COOLING MODE. The MCS-MAGNUM can be configured to stage the cooling based on one of the following sensor inputs:

- Space / Zone Temperature
- Supply Air Temperature
- Return Air Temperature
- Ambient Temperature

The staging of the cooling is the same as the MCS-MAGNUM HVAC software. The unit will stay in this mode until the Ventilation Mode control sensor input drops below the value of setpoint #218 minus its low zone value. The unit will enter a SWITCHING state when the system is leaving the cooling mode. If the humidity is high at this point and the system is entering the VENT ONLY mode any compressors that are on will remain on in anticipation of entering the DEMUNIDITY mode; else all steps will be staged off.

## 21.2.1.2. Heating Mode

When the control sensor input for the Ventilation Mode is below the value of setpoint #219, "Enable Heating", the mode will be set to HEATING. The MCS-MAGNUM can be configured to stage the heating based on one of the following sensor inputs:

- Space / Zone Temperature
- Supply Air Temperature
- Return Air Temperature
- Ambient Temperature

For non-heat pump systems the first stage of heating will be activated. Once the heating pump is fully loaded, the fixed stages of heating will be used as needed. Once a heating stage is turned on a minimum on time can be specified in the ROs information screen if needed, default is 0 time. If stage 1 is a variable type of heating the associated analog output will be modulated to maintain the heating setpoint value. If additional heating is required and stage 1 is at its maximum then stage 2 if available will be enabled. If less heating is required the system will unload all heating steps in stage 2 prior to unloading stage 1.

For a heat pump system the first stage of heating will be the heat pump with the reversing valve on if the ambient conditions are met. (The ambient temperature must be above the setpoint "LOW AMB OFF" Setpoint 22). The second stage of heating can be used if additional heating is required. The emergency heating, if specified, can only be used if the heat pump is not functioning as the first stage of heating.

The unit will stay in the heating mode until the Ventilation Mode control sensor input rises above the value of setpoint #219 plus its high zone value. The unit will enter a SWITCHING state when the system is leaving the heating mode if any heating stages are on.

## 21.2.1.3. Vent Mode

When the control sensor for the Ventilation Mode is below the value of setpoint #218 minus its low zone value and above the value of setpoint #219 plus its high zone the VENT ONLY mode will be entered. This indicates that neither heating nor cooling is required. When in this mode and the Dehumid Mode sensor is greater than setpoint #220, this setpoint must be active, the DEHUMIDITY mode will be entered.

## 21.2.1.4. Dehumidify Mode

The dehumidification mode will use the cooling stages to cool the air and the Hot Gas to heat the air if necessary to remove the humidity and supply neutral temperature air to the space. The cooling state will be set to RTU DEHUMID-COOL and the number of cooling stages wanted on will be staged on up to the number indicated in Dehumidification Section of the Condenser Information window. Note a compressor must be associated with a suction group that has reheat capabilities; refer to the Circuit Base screen, to be turned on and it's suction pressure greater than Setpoint #106 "DEH SUCT TARG" value plus Setpoint #106 "DEH SUC TARG" night setback value.

If the compressor is digital or has Variable Frequency Driver it capacity is modulated to maintain its suction

pressure in the control zone defined by Setpoint #106 value plus the setpoint #106 "DEH SUC TARG" high zone value and minus Setpoint #106 "DEH SUC TARG" low zone value.

If the control sensor temperature (typically supply temperature) is less than the value of Setpoint #129 "Reheat Target" the reheat function of all compressors that are on will be used to maintain the control sensor within the control zone define by Setpoint #129" Reheat Target" value plus Setpoint #129 "Reheat Target" high zone and min minus Setpoint #129 "Reheat Target" low zone.

For systems with Tandem compressors a second compressor will be turned off / on based on its suction pressure. This control is setup as a user logic using relay outputs & a digital input per circuit. Control has been setup to turn on compressors if the suction psi is greater than 87 and off is less than 80 psi. (Using R410A refrigeration.) The system will stay in this mode until the humidity decreases below the value of Setpoint #220 "Enable dehumidification mode" minus its low zone or heating or cooling is required.

## 21.2.1.5. Reheat Flush

Version RTU VI7.23 & up

**Setpoint #213** - Night setback cell will be the value that the compressor AO is incriminated by when in reheat flush.

**Setpoint #11**- Safety time cell, this value will act as a multiplier to the value of this setpoint... this will increase the "load" jump when we're ramping up the compressor AO for a reheat flush. Before, it'd only jump the valve the Value ... which could be too little when jumping the compressor 10% every 3 seconds. With the multiplier, a value of ".2" for normal load adjusts, and a "5" in the Time field .. will jump the valve 1% every time the AO is jumped, this will keep the valve consistent with the amount we're jumping the compressor by. Obviously, it'll need to be fine-tuned in the field. This is for STANDARD superheat control only, FAST superheat needs no multiplier (it responds quick enough normally).

## 21.2.1.6. Forced Reheat Flush

Set point #213, ReHeat Flush is used to allow this option. The set point #213 setup as a TARGET types:

- Value= length of flush.
- Time (SEC) NOT USED.
- High Zone= time in seconds that the reheat must be on when in cooling mode.
- Low Zone= time in seconds that the reheat must be on when in dehumidification mode.
- If safety time is greater than 0; the forced flush will occur when a compressor is started and it will have no effect on the normal flush either in cooling or dehumidification mode.

For a reheat flush to occur Set point #213 must be active, its value greater than 0 and there must be a reheat AO. This software also corrects the issue of a reheat flush not being executed when in cooling mode.

Note, the reheat functions do not change the compressor state, when in reheat flush the AO will be set to 100.0%

## 21.2.1.7. Flush for Fast Superheat Logic

You need to have setpoint #213 "Night Setback" cell populated. The value of this cell is the AO adjustment to the compressor when we enter a flush cycle.

You also need to have setpoint #56 set up as a "Target" type. The "High Zone" cell needs to have a value >0. This value divides the value of setpoint #56, and the result is the delay between adjustments to the compressor AO. IE: If you have a 20% for the night setback in setpoint #213, a 10 for the value of Setpoint #56 and a 2 in the High Zone of Setpoint #56... then the logic will increase the compressor AO by 20% every 5 seconds.

For VFD compressors, recommend value for Setpoint #56 at "3", and the High Zone at "1".

This will be 3 second delays between compressor adjustments. For Setpoint #213's Night Setback field, I'd use "10". This will increase the compressor AO by 10% every 3 seconds when we enter a flush cycle.

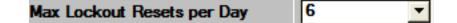
## **Chapter - 22. RTU/Cooling Control States (Number)**

Note: All User Logic points can now access the Unit Control State. The value accessed is the number Listed in parenthesis in the following headings.

## 22.1. UNIT IN POWER UP (0)

This state is entered when the Magnum is powered up or the system has been reset. The system will remain in this state for the time specified in setpoint #23 "POWER DELAY" or for 60 seconds if not active. In this state all Relay Outputs are turned off. This time delay is to insure the microprocessor has stable power before starting the algorithm.

## 22.2. POWER LOSS DELAY (1)


This state is entered when a loss of power occurs. When power is restored the unit will automatically start.

## 22.3. NO RUN-I/O LOST (2)

This state will be entered whenever the Magnum loses communications with any of the I/O boards that are connected through the MCS I/O network. When this state is entered the Magnum will generate an MCS I/O of-fline alarm, which identifies which I/O is offline and a lost I/O shutdown alarm which locks out the unit. Once locked out, if there are ten consecutive successful I/O reads the Magnum will reset and attempt to run. When this occurs a "LOST I/O RESTART" will be generated. Or, the lockout-reset key can be pressed to reset the Magnum, after the lost I/O has been corrected. This will generate a "LOCKOUT RESET." In this state all RO's except ALARM and OIL HEATER are turned OFF.

## 22.4. UNIT IN LOCKOUT (3)

This state is entered whenever a critical situation is encountered that could cause harm to the chiller package. Items such as freeze protect and emergency stop will force the system into this state. Lockouts can be reset without authorization from the keypad or MCS-Connect program; however if the lockout condition has not been corrected, the system will again be forced into the LOCKOUT state. In this state, all RO's except ALARM and OIL HEATER (for screws with an oil pump) are turned OFF and placed in the "LOCKOUT" state. Note: If the Lockout Reset is pressed more than the programmed allowable number of times in one day the unit cannot be reset during the current day except through MCS-Connect and requires Factory authorization. This number is selected from a drop down menu under the Setup Information button, with a range of 2 to12.



## 22.5. UNIT IS OFF (4)

This state is entered when the system has finished a STARTUP, DISABLE, LOCKOUT, or NO RUN- I/O LOST state. The chiller is now ready to move into an active state to meet the capacity required.

#### 22.6. UNIT IS HOLDING (5)

This state is entered when one of three conditions exists:

1) The control sensor reading is being maintained with in the control zone.

2) Control sensor reading is above the control zone but the Rate of Change is less than the value in the (MAX ROC-, #27) setpoint. This indicates that the temperature is decreasing

Toward the target at an acceptable speed. Therefore, no additional cooling is needed at this time.

3) The temperature is below the control zone but the Rate of Change is greater than the (MAX ROC+, #28) setpoint. This indicates that the temperature is increasing toward the target. Therefore, no reduction in cooling is needed at this time.

This state indicates that there is no need to adjust the capacity of the RTU package. This state will end when more or less capacity is required.

### 22.7. UNIT UNLOADING (6)

This state is entered when less capacity is required. Every second an adjustment is made to the step delay. When the delay reaches zero, the counter "steps wanted" on is decreased by 1.

## 22.8. UNIT IS LOADING (7)

This state is entered when more capacity is required. Every second an adjustment is made to the step delay. When the delay reaches zero, the counter "steps wanted on" is increased by 1.

#### 22.9. OFF-SMOKE ALARM (8)



This state is entered when a smoke alarm has been detected. In the MCS-Configuration file the Smoke Alarm Indicator must be selected in the General Information panel under the MAG RTU screen. When this sensor is tripped, an error message "OFF-SMOKE ALARM" is generated and the unit state is changed. In this state all RO's except ALARM and OIL HEATER are turned OFF.

#### 22.10. **RUN/STOP SW OFF (9)**

This state is entered when the run stop switch is off, in the stop position. When the RTU is in this state, the individual compressor states if active are moved to the CMP IS OFF state through the normal states. One capacity STEP will be moved per second.

#### 22.11. SCHEDULED OFF (10)

This state is entered when the schedule is calling for the package to be off. When the RTU is in this state, the individual compressor states if active are moved to the CMP IS OFF state through the normal states. One capacity STEP will be moved per second.

#### 22.12. OFF-NO FLOW (11)

This state is entered when the evaporator flow switch is off. When the RTU is in this state, the individual compressor states if active are moved to the CMP IS OFF state through the normal states. One capacity STEP will be moved per second. If the NO FLOW setpoint is active and set to Lockout the unit will lockout on no flow.

#### 22.13. OFF-NO COND FLOW (12)

This state is entered when the system is calling for a stage of condensing but it is not on.

#### 22.14. AMBIENT OFF (13)

This state is entered when the ambient temperature falls below setpoint #24 "LOW AMB OFF" or is above setpoint #26 "HIGH AMB OFF". The system will remain in this state until the ambient temperature if low rises 5.0°F (2.5°C) above the "LOW AMB OFF" setpoint value or if high drops 5.0°F (2.5°C) below the "HIGH AMB OFF" setpoint value. When the unit is in this state, the individual compressor states if active are moved to the CMP IS OFF state through the normal staging function. One capacity STEP will be moved per second.

#### 22.15. PROCRESS HEAT OFF (14)

This state is entered when the process heat has reached temperature and is no longer required.

#### 22.16. UNIT IS UNLOADED (15)

This state is entered when all of the systems available capacity steps are off. The package is providing no cooling or heating capacity, as none is required. The system is ready to react to space needs.

#### 22.17. UNIT IS LOADED (16)

This state is entered when all of the system's available capacity steps are on and the unit is providing the maximum amount of conditioning capacity.

### 22.18. RTU DEHUMID COOL (17)

This state is entered when dehumidification is required. This state can only be entered when the RTU mode is in VENT ONLY mode and the control dehumidification sensor is greater than the value of setpoint #220, ENABLE DEHUMID. The unit will remain in this state until the control dehumidification sensor drops below the value of setpoint #220 minus the low zone value of this setpoint or heating or cooling is required.

#### 22.19. CONOMIZER ONLY (18)

This state is entered when mechanical cooling is off and the economizer (outside air damper) has been specified in the MCS-Configuration setup and it is being used for cooling.

## 22.20. SWITCHING MODES (19)

This state is entered when the unit is switching modes from either cooling mode or heating mode to Venation only and the unit has a number of cooling or heating steps on. The unit will stay in this state until all steps are off.

## 22.21. UNIT SMOKE UNLDG (20)

This state is entered when the system is unloading because a smoke alarm sensor has tripped. When this sensor is on, an error message "OFF-SMOKE ALARM" is generated and the unit state is changed.

#### 22.22. UNIT OFF UNLDING (21)

This state is entered when the unit has been disabled. It will force a quick unload of the system.

### 22.23. UNIT DMD UNLDING (22)

This state is only entered when the demand limiting input has been selected. The demand limit sensor must be selected in the General Information panel under the MAG V8 screen and its type must be "485 Dmd Step".

This input will indicate the maximum number of steps that the unit can run. If this value is less than the number of steps that are currently on, the unit will unload to meet this value.

## 22.24. UNIT HEAT UNLDING (23)

This state will be entered and will begin unloading the system if it is in heating mode and the control temperature is greater than the control temperature setpoint plus setpoint #164 "HP CTL ZONE +" and the system is not already fully unloaded.

#### 22.25. UNLDING RUN CMPS (24)

State is only used with TurboCor type of compressors.

## 22.26. **OPENING BY VLV (25)**

State is only used with TurboCor type of compressors.

## 22.27. CMP RAMPING UP (26)

State is only used with TurboCor type of compressors.

## 22.28. CLOSING BYP VLV (27)

State is only used with TurboCor type of compressors.

## 22.29. FACTORY STARTUP (28)

A factory startup has been specified. The system cannot be commissioned until the proper authorization has been entered and the factory startup preformed.

## 22.30. MAXIMUM RUN TIME (29)

The maximum run time option has been specified. All functions will remain off unit the proper authorization has been entered.

## 22.31. RTU RUN NORMAL (30)

The RTU is in a normal operating condition; no safeties, smoke alarm etc. have occurred.

#### 22.32. **OFF-FIRE ALARM (31)**

This is similar to the OFF-SMOKE ALARM state but the fire indicator sensor is on. The system will be shut down until the indicator is off and the system returns to normal.

## 22.33. UNIT HEAT HLDG (32)

The unit is in the heat mode and the control temperature is with its zone.

## **Chapter - 23. MAGNUM Alarms And Safeties**

There are three types of alarms that are generated by the Magnum control logic:

- Information only alarms,
- Magnum system alarms and
- Magnum setpoint safety alarms.

All alarms have the same format. The alarm is identified and is date/time stamped. Alarms can be viewed from the Magnum keypad by selecting the 'Alarms' from the main menu, or through MCS-Connect.

#### 23.1. System Generated Alarms

The following alarms are generated to provide information; all except the "LOST A/D CONVTR" will not cause a change in the operation of the unit.

- POWER FAILED Generated when power to the Magnum was lost.
- **POWER RETURNED** Generated when power to the Magnum returned.
- HW DATE INVALID The date contained/read from the hardware real time clock chip is not valid. Check battery voltage, it should be > 2.0 vdc.
- HW TIME INVALID The time contained/read from the hardware real time clock chip is not valid. Check battery voltage, it should be > 2.0 vdc.
- **SW DATE INVALID** The date contained/read from the software clock is not valid.
- **SW TIME INVALID** The time contained/read from the software clock is not valid.
- RAM INTEGRITY the data contained in the battery-backed up RAM memory may be corrupted. This does not stop the Magnum from running. It means the historical data may be incorrect

(run times, cycles, min/max values, and trend/graph data).

■ WATCHDOG RESET – The Magnum has reset itself because of improper operator of the

Magnum board. Please consult the manufacturer if this alarm has occurred.

- LOST A/D CONVTR The Magnum microprocessor has lost communications to the Analog to Digital converter chip (chip that converts sensor voltages to a digital number). Check for a shorted sensor that may cause. This will cause a unit lockout.
- **LOST DISPLAY** Generated when communication to the Keypad/Display is lost.
- CF INIT ERROR The Compact Flash card that was installed cannot be initialized and therefore cannot be used. Replace the Compact Flash card with one that works.
- **BATTERY FAILED** Generated when Magnum is not getting power from the Battery.

#### **23.2. User Initiated Alarms**

The following alarms indicate that an individual took action: (Most require proper authorization)

- **LOCKOUT RESET** Generated when a user resets the unit or a compressor from a locked condition.
- **COMPUTER RESET** Generated when the manual reset button on the Magnum is pressed.
- ALARMS CLEARED Generated when a user clears the alarm history.
- STPT CHANGED Generated when a user makes a change to a setpoint; the number of the setpoint will also be displayed with the alarm.
- RO TO (Selected Condition) Generated when a user manually changes the condition of a Relay Output (either AUTO, MANON, or MANOFF).

- AO TO (Selected Condition) Generated when a user changes the condition of an Analog Output (either AUTO or MANUAL. If MANUAL, then a dialog box will appear to input the number value).
- SI TO (Selected Condition) Generated when a user changes the condition of a Sensor Input (If a digital input, then either AUTO, MANON, or MANOFF. If an analog input, then either AUTO or MANUAL. If MANUAL, then a dialog box will appear to input the number value).
- POINT INFO CLEAR Generated when a user clears all point information (run times, cycles, min/max values, etc.).
- CLOCK SET Generated when a user makes a change to the Magnum real time clock.
- **CFG DOWNLOADED** Generated when a user uploads a new configuration file into the Magnum.
- ETHERNET CHANGE Generated when a user makes a change to the Ethernet settings through the Keypad/Display.
- RS485 CHANGED Generated when a user makes changes to the RS485 address through the Keypad/Display.
- CF CARD INSERTED Generated when a user inserts a Compact Flash memory card into the Magnum.
- CF CARD REMOVED Generated when a user removes a Compact Flash memory card from the Magnum.

## **23.3. Automatic Alarms**

The following alarms indicate an action that the MCS-MAGNUM made automatically:

- ROTATED LEAD Generated when the MCS-MAGNUM automatically rotates the Lead Compressor.
- DAYLIGHT SAVINGS Generated when the MCS-MAGNUM automatically changes the clock to adjust for Daylight Savings Time.

#### **23.4. Configuration Alarms**

These alarms indicate a problem with the configuration file in the unit. The unit is not operational and a new configuration must be transmitted to the MCS-MAGNUM using MCS-Connect.

- INVALID CONFIG Checksums are incorrect.
- INVALID CFG VER The version number of the configuration is invalid.
- **INVALID CFG TYPE** The configuration type does not match the software type.

#### 23.5. MCS I/O Network Alarms

These alarms indicate problems with the MCS local network:

- LOST SI COMM #\_ / LOST RO COMM #\_ Generated when communications to a Sensor Input or Relay Output board is lost. The number of the board will be displayed with the alarm. The system can be accessed but will be in a NO RUN- I/O LOST state.
- MCS-STAT OFFLINE The Magnum has lost communications to the MCS-STAT.
- LOST IO SHUTDOWN Generated when Magnum is running and there are no communications to one or more of the I/O boards. The MCS-MAGNUM can be accessed but the unit will be in a NO RUN- I/O LOST state.
- LOST I/O RESTART Generated when the Magnum does an automatic reset once I/O communications are restored.

#### 23.6. CONTROLLING Sensor INPUT Alarms

These alarms indicate a problem with a sensor; it is either shorted or open. The alarm will generate using the following format: "ALARM xxx" where xxx is the sensor input name. The following sensors related to the entire system are tested:

- Leaving temperature: If failed, and this sensor is used for control then Lock Out the system, else alarm only.
- **Returning temperature:** If failed, and this sensor is used for control then Lock Out the system, else alarm only.
- **Space temperature:** If failed, and this sensor is used for control then Lock Out the system, else alarm only.
- **Ambient temperature:** If failed, and this sensor is used for control then Lock Out the system, else alarm only.

The following compressor sensors are tested. If they fail, then that compressor only is locked out:

- Suction pressure and temperature
- Discharge pressure and temperature
- Oil pressure and temperature
- Motor temperature (if an analog input)

#### 23.7. Emergency Stop Alarm

• **EMERGENCY STOP** – Generated when the emergency stop sensor input has been turned on. The system can be accessed but the unit is in a Lock Out state and will not run.

## 23.8. Setpoint Safety Alarms

The Magnum algorithm incorporates a number of safety checks, based on setpoints, preventing unsafe conditions that could potentially cause damage to the system. When a safety trip occurs the compressor will be placed in the SAFETY TRIPPED state. The compressor will remain in this state for the time in the 'Safety Down Time (min)' cell and then move to the CMP ANTICYCLE or CMP IS OFF state where the compressor will be allowed to run again if required. If the same safety trip occurs again within the time in the 'Lockout Delay Hrs' cell since the first trip, the circuit will be set to CMP LOCKED OUT state, which requires a manual reset to restart the compressor. If the lockout delay time is set to zero, the Magnum will generate a lockout condition the first time that the safety occurs.

## 23.9. Sensor Inputs Used With Magnum Setpoint Safeties:

- Suction Pressure(Analog or Digital)
- Discharge Pressure (Analog or Digital)
- Oil Pressure (Analog or Digital)
- Oil Differential Pressure (Calculated value)
- Oil Temperature (Analog or Digital)
- Discharge Temperature (Analog or Digital)
- Motor Temperature (Analog or Digital)
- Motor Amps (Analog or Digital)
- Motor Fault (Analog or Digital)
- Liquid Temperature (Analog Only)
- Compress Proof (Digital Only)
- Flow Switch (Digital Only)

#### 23.10. Setpoint Safeties

For a safety trip to occur, both the Sensor Input and the associated setpoint must be active. If a safety trips, the alarm name will consist of the setpoint name plus additional identification such as point number, compressor number, or 30 second history leading up to the trip if applicable.

Note: Most safeties are checked only if the compressor is running, however if the safety is always checked it will be noted.

The following is a list of safeties that are incorporated in the standard chiller algorithm control. These safeties are checked every second. For a system with multiple circuits, each one is tested individually. If a safety trip occurs, only that respective compressor will be affected, the others will continue to function normally.

### 23.11. Freeze Protection (SAFETY IS ALWAYS CHECKED)

If the leaving temperature drops below the setpoint value then the entire system will Lock Out and a FREEZE alarm will be generated. There is also an option to have one freeze protect for each individual circuit. Refer to section Setpoint #111.

#### 23.12. No Flow Protection

If a flow switch is used, then the entire system will be Locked Out if setpoint #105 is active. If the setpoint is inactive, the Magnum will determine if there is a second pump, if so it will be started. Else, the system will shut down and automatically restart when the flow switch is on, indicating flow has returned. There is also an option to have a flow switch for each individual circuit. Refer to section setpoint #105.

#### 23.13. Phase Loss Protection

Phase loss, as indicated by the phase loss monitor, will result in the entire system being Locked Off and a phase loss alarm will be generated. If setpoint #166 is inactive the Magnum will wait for 2 seconds before the Lock Out occurs. The alarm will be PHASE LOSS and no restart will be attempted. If setpoint #166 is active, the name of the setpoint will be in the message. Refer to section setpoint #166.

## 23.14. Low Differential Oil Pressure

This safety is designed to meet the compressor manufacturer requirements on oil pressure.

For the first 5 seconds following a compressor start (60 seconds if Hitachi screw compressor) this safety is NOT checked. For the next 30 seconds, if the oil differential pressure drops below ½ of the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field of that setpoint, then the circuit will be Locked Out and a LOW OIL alarm generated. After this time period, if the oil differential pressure drops below the value of the setpoint and it remains there for the time specified in the 'Time (sec)' field, then the compressor will be Locked Out and a low oil alarm generated. This safety is checked for when the compressor is on and not in a Pump Down state. Refer to section setpoint #91.

#### 23.15. Low Suction Pressure

If the suction pressure drops below the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field, the compressor will be locked out and a LOW SUCTION alarm generated. This safety is bypassed when the compressor is in a Pump Down state. This safety can also be used as a freeze protection based upon the suction pressure. When this safety trip occurs, all compressors in the same suction group will react in the same manner. Refer to section setpoint #77.

#### 23.16. Unsafe Suction Pressure

This safety is similar to the low suction pressure safety, except it is often set up with a lower value and a shorter safety time. If the suction pressure drops below the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field of that setpoint, then the circuit will be Locked Out and a UNSAFE SUCTION alarm generated. This safety will always cause a Lock Out on the first trip, requiring a manual reset. This safety is bypassed when the compressor is in a Pump Down state. When this safety trip occurs, all compressors in the same suction group will react the same. Refer to section setpoint #80.

## 23.17. High Discharge Pressure (SAFETY IS ALWAYS CHECKED)

If the discharge pressure rises above the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field of that setpoint, then the circuit will be locked out and a HIGH DISCHARGE alarm generated. Refer to section setpoint #81.

#### 23.18. Low Discharge Pressure

If the discharge pressure drops below the value of the setpoint for the time specified in the 'Time (sec)' field, the compressor will be Locked Out and a LOW DISCHARGE alarm generated. Refer to section setpoint #85.

## 23.19. High Discharge Temperature (SAFETY IS ALWAYS CHECKED)

If the discharge temperature analog input rises above the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field, the compressor will be Locked Out and a HIGH TEMPERATURE alarm generated. Refer to section setpoint #87.

## 23.20. High Motor Temperature or Motor Fault (SAFETY IS ALWAYS CHECKED)

If the high motor temperature input rises above the value of the setpoint or the digital input turns ON for the time specified in the 'Time (sec)' field, the circuit will be Locked Out and a HIGH MOTOR TEMPERATURE or MOTOR FAULT alarm generated. Refer to section setpoint #95.

#### 23.21. High Oil Temperature

If the oil temperature rises above the value of the setpoint or the digital input turns ON for the time specified in the Time (sec)' field, the compressor will be locked out and a HIGH OIL TEMPERATURE alarm generated. Refer to section setpoint #94.

#### 23.22. High Motor Amperage

If the amperage analog input rises above the value of the compressor's respective FLA setpoint #171 – 190 times the value of setpoint #75 or the digital input turns ON for the time specified in the Time (sec)' field, then the circuit will be Locked Out and a HIGH MOTOR AMP alarm generated. Refer to section setpoint #75.

#### 23.23. Low Motor Amperage

If the amperage analog input drops below the value of the compressor's respective FLA setpoint #171 – 190 times the value of setpoint #76 or the digital input turns ON for the time specified in the Time (sec)' field, then the circuit will be Locked Out and a LOW MOTOR AMP alarm will be generated. Refer to section setpoint #76.

#### 23.24. No Compressor Proof

If a compressor is called to be on and the compressor proof digital input is OFF, a NO COMP PROOF alarm will be generated. Refer to section setpoint #96.

#### 23.25. High Oil Seal Temperature (Screw Compressors only)

If the oil seal temperature analog input rises above the value of the setpoint for the time specified in the Time (sec)' field, then the circuit will be Locked Out and a HIGH OIL SEAL alarm generated. This safety is by-passed when the compressor is in a Pump Down state. Refer to section setpoint #93.

#### 23.26. Dirty Oil Filter (Fixed Step Compressors only)

If the difference between the discharge pressures minus the oil pressure is above the value of the setpoint for the time specified in the Time (sec)' field, a DIRTY OIL FILTER alarm will generate. Refer to section setpoint #97.

#### 23.27. Low Discharge Superheat

If the discharge superheat is below the value in setpoint for the time specified in the Time (sec)' field, then the circuit will be Locked Out and a LOW DISCHARGE SUPERHEAT alarm will be generated. Refer to section setpoint #84.

#### 23.28. Low Discharge Superheat

If the discharge superheat is below the value in setpoint for the time specified in the Time (sec)' field, then the circuit will be Locked Out and a LOW DISCHARGE SUPERHEAT alarm will be generated. Refer to section setpoint #84.

## Chapter - 24. RTU Safeties & Faults

#### 24.1. High Static Pressure

When the supply fan is on, the duct static pressure will be tested for a high condition. If the duct static pressure is greater than the value of setpoint #149 for the safety time of this setpoint a HIGH STATIC pressure alarm message will be generated and the unit will be placed in a lockout condition. The system will attempt to restart if this setpoint is setup for auto restart.

#### 24.2. Low Static Pressure

When the supply fan is on, the duct static pressure will be tested for a low condition. If the duct static pressure is less than the value of setpoint #146 for the safety time of this setpoint a low static pressure alarm message will be generated and the unit will be placed in a lockout condition. The system will attempt to restart if this setpoint is setup for auto restart.

### 24.3. Supply Fan VFD Fault

If the 'Supply Fan Speed Fault' in the Ventilation Info section, is used and this sensor is on for a time greater than the safety time of setpoint #150, indicates that a fault condition exists with the supply fan's VFD. An alarm message with the name in setpoint #150 will be generated for information purposes only there will be no change to the operation of the unit.

### 24.4. Exhaust Fan VFD Fault

If the 'Exhaust Fan Speed Fault' in the Ventilation Info section, is used and this sensor is on for a time greater than the safety time of setpoint #221, indicates that a fault condition exists with the exhaust fan's VFD. An alarm message with the name in setpoint #221 will be generated for information purposes only there will be no change to the operation of the unit.

#### 24.5. Return Fan Fault

If the 'Return Fan Fault' in the Ventilation Info section, is used and this sensor is on for a time greater than the safety time of setpoint #102, indicates that a fault condition exists with the return fan. An alarm message with the name in setpoint #102 will be generated for information purposes only there will be no change to the operation of the unit.

#### 24.6. MOD Gas Alarm

If the MOD GAS option has been specified and the 'MOD Gas Fault' in the Heating Info section, is used and this sensor is on for a time greater than the safety time of setpoint #148, indicates that a fault condition exists with the mod gas heating unit. An alarm message with the name in setpoint #148 will be generated for information purposes only there will be no change to the operation of the unit.

## 24.7. No Ignition Alarm

If either heating option MOD Gas or Direct Fire is selected a proof of ignition is required. This can be indicated either with a digital input, 'Ignition Indicator' if specified or if not specified by the system seeing an increase in the control temperature, refer to setpoint #186. If proof of ignition has not occurred within the time specified in setpoint #186 the associated heating relay with be locked off and an NO IGNITION alarm will be generated.

#### 24.8. SCR Heating Alarm

If the MOD SCR option has been specified and the 'MOD SCR Fault' in the Heating Info section, is used and this sensor is on for a time greater than the safety time of setpoint #147, this indicates that a fault condition exists with the mod SCR heating unit. An alarm message with the name in setpoint #147 will be generated for information purposes only there will be no change to the operation of the unit.

### 24.9. Clogged Filter Alarm

If the 'Clogged Filter' in the Ventilation Info section, is used and this sensor is on for a time greater than the safety time of setpoint #227, indicates that a clogged filter condition exists. An alarm

message with the name in setpoint #227 will be generated for information purposes only there will be no change to the operation of the unit.

### 24.10. Energy Wheel Alarm (No Rotation)

If a heat wheel has been specified and the 'Heat Wheel Rotation' in the Heating Info section, is used and this sensor is off indicating no rotation of the wheel after the heat wheel has been called to be on for a time greater than the bypass safety time of setpoint #188, this indicates that the heat wheel is not rotating. An alarm message will be generated for information purposes only there will be no change to the operation of the unit.

### 24.11. Energy Wheel Alarm (Fault)

If a heat wheel has been specified and the 'Heat Wheel Fault' in the Heating Info section, is used and this sensor is on indicating that a fault has occurred with the heat wheel after the heat wheel has been called to be on for a time greater than the bypass safety time of setpoint #188, this indicates that a heat wheel fault exists. An alarm message with the name in setpoint #188 will be generated for information purposes only there will be no change to the operation of the unit.

#### 24.12. Smoke Alarm

If the 'Smoke Alarm Indic' in the General Info section, is used and this sensor is on a smoke

condition exists. An 'OFF-SMOKE ALARM' alarm message will be generated for information. Both the RTU Unit state and the Cooling State are set to 'OFF SMOKE ALARM'; the supply and exhaust fan will be off, outside air dampers will be closed and all cooling and heating stages will be off.

#### 24.13. Fire Alarm

If the 'Fire Alarm Indic' in the General Info section, is used and this sensor is on a fire condition

exists. An 'OFF-FIRE ALARM' alarm message will be generated for information. Both the RTU Unit state and the Cooling State are set to 'OFF FIRE ALARM'; the supply and exhaust fan will be off, outside air dampers will be closed and all cooling and heating stages will be off.

### 24.14. Smoke Purge Alarm

If the 'Smoke Purge' in the General Info section, is used and this sensor is on and the smoke alarm is off then the system will enter a smoke purge condition. A 'SMOKE PURGE' alarm message will be generated for information. Both the RTU Unit state and the Cooling State will 'SMOKE PURGE' the system will remain in this state until the purge indicator goes off.

## Chapter - 25. Condenser Types Supported by the Magnum

Many condenser types are supported by the Magnum controller including individual condensers per circuit, shared condensers between multiple circuits, and common condensers for all circuits. The type of condenser plus the number of Relay Outputs needed are specified in MCS-Config.

|   |                                                              | Condenser Information                          |
|---|--------------------------------------------------------------|------------------------------------------------|
|   | Condenser Type No Condenser                                  | AO Starting Stage Fluid Cooler Econo?          |
|   | Type<br>No Condenser<br>RO Step Common                       | Exhaust Fan DI<br>EvapRefTmp                   |
|   | RO Step Individual<br>RO Step Combined                       | Newly Started Comp Controls<br>Common Fan Bank |
|   | Modulating Common<br>RO Shared                               | C Yes   No                                     |
|   | Dual V8<br>Modulating Individual<br>Common VFD Fan w/ Bypass |                                                |
|   | Modulating Step Common<br>Evap Individual                    | New Condenser types<br>with firmware 17.62Y    |
|   | Evap Common<br>Modulating Shared                             |                                                |
|   | RO Adaptive Bank<br>RO Adaptive Common                       |                                                |
| 1 | PID Modulating Individual<br>PID Modulating Step Common      |                                                |

## The Magnum supports the following Condenser Types:

No Condenser

No condenser specified.

RO Step Common

The highest discharge pressure from any compressor on the system will be the controlling pressure.

RO Step Individual

Each compressor will have one or more condenser Relay Outputs associated with it. The discharge pressure on that compressor will be the control pressure for its own condenser.

RO Step Combined

The highest discharge pressure from either of the compressors on the shared circuits will be the controlling pressure (circuits 1 and 2 are shared, circuits 3 and 4 are shared, circuits 5 and 6 are shared, and circuits 7 and 8 are shared).

Modulating Common

The highest discharge pressure from any compressor on the system will be the controlling pressure. The Analog Output is modulated based on the Rate of Change of the controlling discharge pressure. It can also be controlled on a selected sensor input.

Modulating Step Common

This type of condenser has a common fan bank for the system. The control will be on the systems highest discharge pressure. The Relay Outputs are also supported along with an Analog Output.

Modulating Individual

Each compressor will have its own condenser Analog Outputs associated with it. The Analog Output for each circuit is modulated based on its own discharge pressure Rate of Change. It can also be controlled on a selected sensor input. You may also select Relay Outputs to be turned ON/OFF while modulating the Analog Output.

RO Shared

This type of condenser will take the highest discharge pressure of circuits 1 and 2, then 2 and 3, then 3 and 4, etc. to use as the control discharge pressure. This condenser type does not have the option to bypass the startup compressor.

Dual V8

This special type of condenser is a common control air condenser with two stages of fans plus a VFD Fan. Control of the fan speed will be different depending on whether one or two stages are on. All compressors are in the same fan bank with the highest discharge pressure being the control.

Common VFD Fan with Bypass

Three consecutive Relay Outputs, an Analog Output, and a VFD fault indicator are required to control this type of condenser. RO's needed:

- 1) VFD LOAD-This relay will be ON indicating the fan can be used.
- 2) VFD BYPS-This relay will be OFF unless a VFD fault has occurred.
- 3) VFD ENAB-This relay will be ON unless a VFD fault has occurred.

During normal operation, VFD LOAD will be on, VFD BYPS will be off, and VFD ENAB will be on. The fan will be modulated as required by the condenser or economizer logic. If a fault occurs, all relays will be turned off and the VFD will be set to 0. The Magnum will wait for the time specified in Setpoint #90 "COND FAULT" before the fan will be run without VFD control if it is needed by the condenser logic (economizer logic will not function in this condition). Once this time has passed and the condenser logic calls for the fan, then VFD BYPS will be turned on thereby turning the fan on, however it will NOT be modulated.

The Magnum can also support a variable speed fan for all three of the air type of condensers. Each compressor can support a variable speed fan. The variable speed must be on the first Relay Output associated with that compressor.

Note 1: The discharge temperature must be at least 117° F and the discharge superheat needs to be at least 20° F to guarantee good oil separation.

Note 2: Condenser staging is critical if the Magnum is to function in different climates. The best option for air-cooled chillers is to have each fan on its own contactor and a frequency drive on fan 1. This configuration allows the most optimum control in all weather.

Modulating Step Common

Similar to the Modulating Common type with the addition of relay outputs. The highest discharge pressure from any compressor on the system will be the controlling pressure. The Analog Output is modulated based on the Rate of Change of the controlling discharge pressure. It can also be controlled on a selected sensor input. When the analog output reaches it maximum value and more cooling is required the next relay will be turned on and the analog output value will be set to its minimum value.

Evap Individual

Evaporative condensers are used to improve the condensers efficiency by spraying water over the condensing coil from above while air is blown up through the coil from below. Each compressor will have its own condenser Analog Outputs associated with it. The Analog Output for each circuit is modulated based on its own discharge pressure Rate of Change. It can also be controlled on a selected sensor input. You may also select Relay Outputs to be turned ON/OFF while modulating the Analog Output.

Evap Common

Evaporative condensers are used to improve the condensers efficiency by spraying water over the condensing coil from above while air is blown up through the coil from below .Similar to the Modulating Common type with the addition of relay outputs. The highest discharge pressure from any compressor on the system will be the controlling pressure. The Analog Output is modulated based on the Rate of Change of the controlling discharge pressure. It can also be controlled on a selected sensor input. When the

analog output reaches it maximum value and more cooling is required the next relay will be turned on and the analog output value will be set to its minimum value.

RO Adaptive Bank– Air cooled Condenser Fan Control

Used to control the condenser fan relay outputs for a single compressor, multiple compressors on the same refrigerant circuit, or a bank of condenser fans for multiple refrigerant circuits. If single compressor the condenser fans are stage on/off based on the compressor discharge pressure. If multiple compressor or refrigerant circuit, then the high discharge of the running compressors is used to stage condenser fans.

■ RO Adaptive Common – Air Cooled Condenser Fan Control

Used to control the condenser fan relay outputs for all the refrigerant circuits on the unit. This control logic finds the high discharge pressure on the running compressors and uses it to stage on/off the condenser fan relays.

PID MOD Individual

Required software: Config version 18.01V or later Connect version 18.31 or later Firmware 17.62Y (all firmware except LWC MAG and CPM MAG)

Each compressor will have its own condenser Analog Outputs associated with it. PID control will turn an analog output into a stand alone PID controlled output. This output will have a controlling sensor that modulates the AO to a maintain target. This logic will run all the time.

#### PID Step Common

Required software: Config version 18.01V or later Connect version 18.31 or later Firmware 17.62Y (all firmware except LWC MAG and CPM MAG)

This type of condenser has a common fan bank for the system. The control will be on the systems highest discharge pressure.

PID control will turn an analog output into a stand alone PID controlled output. This output will have a controlling sensor that modulates the AO to a maintain target. This logic will run all the time.

#### **25.1. Condenser Introduction**

### 25.1.1 RO Step Condenser Cut In – Out Logic

The Cut In and Cut Out Logic Setpoints are as follows:

| Setpoint #45 "CND STG1 ON"  | - Condenser stage 1 Cut In (ON).                                |
|-----------------------------|-----------------------------------------------------------------|
| Setpoint #46 "CND STG1 OFF" | - Condenser stage 1 Cut Out (OFF).                              |
| Setpoint #47 "CND DIFF ON"  | - Cut In differential for additional condenser stages for (ON). |
| Setpoint #48 "CND DIFF OFF" | - Cut Out differential for additional condenser stages (OFF).   |
| Setpoint #49 "CND MIN RUN"  | - Minimum run time for a condenser stage                        |

Condenser Relay Outputs will be turned on based upon the value in Setpoint #45 "CND STG1 ON". When discharge pressure reaches this value, the first condenser Relay Output is turned on. If additional condenser outputs are present, they will be turned on when the pressure exceeds the cut in value plus the value contained in Setpoint #47 "CND DIFF ON". When discharge pressure falls, the condenser outputs will be turned off based upon the Setpoint #46 "CND STG1 OFF" plus the value contained in Setpoint #48 "CND DIFF OFF". The first step will be turned off when discharge pressure falls below Setpoint #46 "CND STG1 OFF".

Example: COND FAN 1 ON at 200 psi (Discharge)

| Setpoint #45 "CND STG1 ON" = 200 psi |  |
|--------------------------------------|--|
| Setpoint #46 "CND STG1 OFF"= 170 psi |  |
| Setpoint #47 "CND DIFF ON" = 20 psi  |  |

COND FAN 1 OFF at 170 psi COND FAN 2 ON at 220 psi (200 + 20) Setpoint #48 "CND DIFF OFF" = 5 psi COND FAN 3 ON at 240 psi (220 + 20) COND FAN 3 OFF at 180 psi (175 + 5)

## 25.1.2 RO Step Condenser with Variable Speed Fan

The Setpoints for variable speed fan control are as follows:

Setpoint #54 "CND MIN SPD" - Minimum variable speed allowed.

Setpoint #55 "CND MAX SPD" - Maximum variable speed allowed.

The purpose of the variable speed fan is to reduce the cycling of the fans by adjusting the speed of the variable fan point. This control works in conjunction with the Cut In and Cut Out logic of each compressor. When a fan is turned on, the speed of the variable point for that compressor is set to maximum allowed percentage. As the discharge pressure falls, the fan speed is adjusted proportionally. When the minimum is reached the fan will turn off.

COND FAN 2 OFF at 175 psi (175 + 5)

## 25.1.3 Condenser Control

The Condenser Control logic is run with every pass of the algorithm.

### 25.1.3.1. Common Terms

| Inf | nformation that relates to condensors on the circuit |                     |                              |                              |                            |             |                  |                 |
|-----|------------------------------------------------------|---------------------|------------------------------|------------------------------|----------------------------|-------------|------------------|-----------------|
|     | #<br>Cond<br>Faults                                  | Cond<br>Fan<br>Bank | Condenser<br>Coil Temp<br>#1 | Condenser<br>Coil Temp<br>#2 | Tandem<br>EXV<br>Circuit # | EXV Control | Suction<br>Group | Comp<br>Name/ID |
|     | 0                                                    | 1                   | Not Used                     | Not Used                     | 1                          | Suct Spht   | 1                | 1               |
|     | 0                                                    | 2                   | Not Used                     | Not Used                     | 2                          | Suct Spht   | 2                | 2               |
|     | 0                                                    | 3                   | Not Used                     | Not Used                     | 3                          | Suct Spht   | 3                | 3               |

#### Condenser Fan Bank:

Indicates which circuits share common condenser fans or are individually controlled.

#### **Suction Group:**

Indicates which circuits share a common suction line.

#### Fluid Cooler Econo?option:

Specifies if the Fluid Cooler Economizer (if used) can use the condenser fans or VFD.

| Fluid Cooler Econo? |      |  |  |  |
|---------------------|------|--|--|--|
| 🔿 Yes 👘             | 🖲 No |  |  |  |

## 25.1.3.2. Control Discharge Pressure Calculation

If control is based on discharge pressure, all types of condensers will operate in the following sequence. For compressors within the same fan bank or suction group, the compressor with the highest discharge pressure will be held as the control pressure, regardless if the compressors are running or not.

The newly started compressor will have the controlling discharge pressure even if it is not the highest value in order for it to build pressure (startup mode is defined as the compressor has been on for less than 5 minutes and its discharge pressure is less than the value of Setpoint #45 "CND STG1 ON" minus the value of Setpoint #47 "CND DIFF ON"). However, this logic will be overruled if another compressor

Control Condenser On:

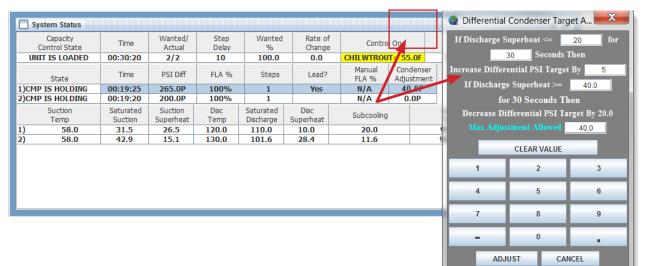
- O Disc PSI
- 💿 Disc/Suct Ratio -
- Diff PSI(Disc-Suct)
- ) Other SI

sharing the same condenser approaches the high discharge safety (if discharge pressure rises above calculated value of Setpoint #81 "HI DISC PSI" minus #83 "HI DISC RELOAD")

If control is based on Other SI, the value of that sensor is always used as the control discharge pressure.

#### Control Condenser On:

PORTAN

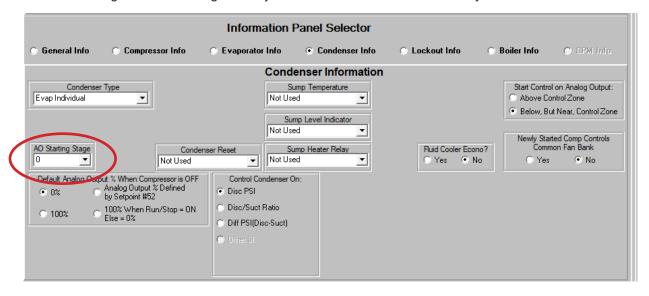

- Disc PSI-The Magnum will check for the compressor with the highest discharge and use that as the controlling pressure.
- Disc/Suct Ratio Control logic will be the same as Disc PSI control except the ratio of the discharge pressure to the suction pressure will be used as the control. Note changes to related set points will be required.
- Diff PSI(Disc-Suct) -

#### HVAC FIRMWARE VERSION 17.34 and up

| Control Condenser On:                                 |                                                 |
|-------------------------------------------------------|-------------------------------------------------|
| <ul> <li>Disc PSI</li> <li>Disc/Suct Ratio</li> </ul> | Differential Condenser Target Adjustment        |
| Diff PSI(Disc-Suct)                                   | If Dischage Superheat <= 20 for 30 Seconds Then |
| Other SI                                              | Increase Differential PSI Target By 5           |
|                                                       | If Dischage Superheat >= 40 for 30 Seconds Then |
|                                                       | Decrease Differential PSI Target By 20          |
|                                                       | Max Adjustment Allowed 40                       |

#### MCS-CONFIG VERSION 18.01G and up MCS-CONNECT VERSION 18.20.06 and up NEW LOGIC ADDED WITH THESE UPDATES

This logic will utilize the calculated differential pressure (Discharge Pressure/Suction Pressure) to control the condenser.




All condenser setpoints will remain the same for both modulating and step control.

When Diff PSI is selected the below information will become editable in the config program.

Here you will be able to customize adjustments to the differential target based on discharge superheat being low or high.

In this config example if discharge superheat falls below 20 degrees for 30 seconds then the differential target will be increased by 5 psi. If 30 more seconds goes by and the discharge superheat has not increased above 20 degrees then we will do another increase of 5 psi to the target. The adjustments will continue all the way up to a maximum of 40 psi defined by our "Max Adjustment Allowed" box. Once discharge superheat is between the high and low settings the adjustment will hold where it's currently at.



The logic works the same exact way when the discharge superheat rises above 40 degrees only we will decrease the differential every 30 seconds by 5 psi all the way back down to a 0 psi adjustment. The adjustments cannot go to a negative value.

## **MCS-CONNECT SCREEN ADJUSTMENT - Diff PSI(Disc-Suct**

Other SI - Control logic will be the same as Disc PSI control except the value of the sensor that is specified will be used as the control. Note changes to related set points will be required. When this option is selected a "Other Control Sensor" window will enable the sensor to be selected.



To use 'Other SI', the condenser type must be a 'COMMON TYP



The Magnum will not check for the compressor with the highest discharge pressure but will always use the value of the sensor that is selected as the control.

#### 25.1.3.3. Condenser Reset

If Diff PSI(Disc-Suct) is selected as your 'control condenser on' in the MCS Config program you'll have a "Condenser Adjustment" box in your system status window through MCS Connect. Here you will see the adjustments made to your condenser target based on the discharge superheat. If you're at least "Factory" authorized you can double click the value in the condenser adjustment box, it will open a window as you see in the example which will allow you to make changes to how the adjustments are made.

If sensor is specified its value will be added to the condenser control set points #45, #46 and #50.

#### 25.1.3.4. Condenser Low Ambient

When a compressor is started its discharge pressure will be used as the controlling pressure for five minutes,

enabling that compressor to build head pressure. However, if Setpoint #204 COND LOW AMB is active and there is an ambient temperature sensor reading less than this Setpoint, then this compressor's discharge pressure will remain in control for an additional time as specified in the "Time (sec)" field.

## 25.1.3.5. Condenser Related Setpoints

The following are Condenser related Setpoints:

| 45 | CND STG1 ON<br>(RO Type)      | When the discharge pressure is above this value, turn on the first stage of the condenser<br>er fans.<br>'Time (sec)' field: (Applies to compressors with shared condensers) If non-zero, then<br>the compressor in startup state will not be in sole control of the condenser fans, it will<br>control off of highest discharge pressure. If zero, then compressor in startup will have<br>sole condenser control for 5 minutes. This option is selected in in the 'Newly started<br>Comp Controls Common Fan Bank' box in the 'Condenser Information' panel under the<br>MAGNUM screen. |
|----|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46 | CND STG1 OFF<br>(RO Type)     | If stage 1 of condenser capacity is on and the discharge pressure drops below this value, then turn this stage off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50 | CND TRGT<br>(Modulating Type) | Target logic will try to maintain by modulating the AO.<br>SP must be set up as target type. Hi/Low zones are used for setting control zone.<br>If target type in HP mode, setback is added to target.                                                                                                                                                                                                                                                                                                                                                                                    |

## **25.2. CONDENSER TYPES**

#### 25.2.1 No Condenser

This option indicates there is no condenser associated with this unit.

| Condenser Type |   |
|----------------|---|
| No Condenser   | • |

## 25.2.2 RO Step Common

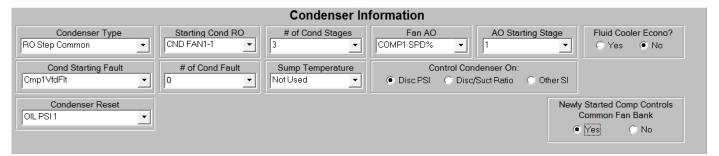
The RO Step Common of condenser has one bank of fans. Make sure that all compressors in the Circuit Base point to the same common fan bank. The above example does not have a Fan Analog Output and there are three stages of fans starting with CND FAN 1 relay. All stages must be consecutive Relay Outputs.

| Condenser Information                                                                                                                                                                                                             |                                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Condenser Type     Starting Cond RelayOuput     # of Cond Stages     Fan A0     Fluid Cooler Ec       RO Step Common     Image: CND FAN 1     Image: Starting Cond RelayOuput     # of Cond Stages     Fan A0     Fluid Cooler Ec |                                                            |  |  |  |  |  |
| Cond Starting Fault     # of Cond Fault     Sump Temp SI     Control Condenser On:       Not Used     Image: Control Condenser On:     Image: Control Condenser On:     Image: Control Condenser On:                              |                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                   | Newly started Comp Controls<br>Common Fan Bank<br>Yes O No |  |  |  |  |  |

For example:

| Setpoint # | Name         | Value  |  |
|------------|--------------|--------|--|
| 45         | CND STG1 ON  | 200.0P |  |
| 46         | CND STG2 OFF | 170.0P |  |
| 47         | CND DIFF ON  | 15.0P  |  |
| 48         | CND DIFF OFF | 5.0P   |  |

Discharge control pressure is 200.0 P, CND FAN 1, first condenser stage will be turned on.


If control pressure is equal to or greater than 215.0 P then the second stage will be turned on. (200.0 + (15.0 \* 1))If control pressure is equal to or greater than 230.0 P then the third stage will be turned on. (200.0 + (15.0 \* 2))Discharge control pressure is above 230.0 P; all three condenser stages are on.

When the control pressure drops below 180.0P the third condenser stage will be turned off. (170.0 + (5.0 \* 2))When the control pressure drops below 175.0P the second condenser stage will be turned off. (170.0 + (5.0 \* 1))When the control pressure drops below 170.0P the first condenser stage will be turned off. (170.0)

#### **Condenser Faults**

This example has no condenser faults. If used, and any one of the digital inputs are ON for the time specified in Setpoint #90 if active, then the unit will be locked out and an alarm message will be generated.

## 25.2.2.1. RO Step Common with a Fan AO and Condenser Faults



The above example is the same as the previous example with the addition of a Fan AO and two condenser faults.

#### Fan AO Control (same for all types of air condenser control)

Two more Setpoints than the previous example are needed to control the speed of the fan:

| Setpoint # | Name        | Value  |  |  |
|------------|-------------|--------|--|--|
| 54         | CND MIN SPD | 20.0%  |  |  |
| 55         | CND MAX SPD | 100.0% |  |  |

CND FAN 1 will be turned on when the control pressure is equal to or greater than 200.0, same as in previous example. At this point the Fan AO speed will be set to its maximum value, Setpoint #55. If the pressure changes between 170.0 and 214.9 the fan speed will also be modulated proportionally between its maximum and minimum settings. If the pressure is at 185.0 the fan speed will be set to 61.2%. If the pressure is at 190.0 the fan speed will increase to 75.0%. This will provide precision control in maintaining optimum discharge pressure.

If the pressure increases to 215.0 the condenser's second stage will be turned on and the fan speed will also be at 100.0%. If the pressure changes between 175.0 and 229.9 the fan speed will also be modulated proportionally between its maximum and minimum settings.

If the pressure increases to 230.0 the condenser's third stage will be turned on and the fan speed will also be at 100.0%. If the pressure changes between 180.0 and 229.9 the fan speed will also be modulated proportionally between its maximum and minimum settings. If the pressure is at 230.0 and above the fan speed will be at 100.0%.

As the pressure decreases toward the Cut Out point the fan speed will decrease toward its minimum setting. Once a stage is turned off, the fan speed will be set to 100.0% and again it will be modulated based upon the pressure.

#### **Condenser Faults**

This example has two condenser faults. They must be consecutive digital input types starting with FAN FLT

1. If either of these digital inputs are ON for the time specified in Setpoint #90 if active, then the unit will be locked out and an alarm message will be generated.

## 25.2.3 RO Step Individual

| Condenser Information             |                  |                |                         |        |                                            |
|-----------------------------------|------------------|----------------|-------------------------|--------|--------------------------------------------|
| Condenser Type RO Step Individual |                  |                | AO Starting St          | tage   | Fluid Cooler Econo?                        |
|                                   | Sump Temperature | Control        | Condenser On:           |        |                                            |
|                                   | Not Used 🗾       | 💿 Disc PSI 📀 D | Disc/Suct Ratio 🛛 🔘 Otl | her SI |                                            |
| Condenser Reset                   |                  |                |                         | (      | / Started Comp Controls<br>Common Fan Bank |
|                                   |                  |                |                         | •      | Yes O No                                   |

The RO Step Individual has a bank of fans for each compressor. The number and location of the fan are specified under the Circuit Base screen.

|   | Information that relates to condensors on the circuit |  |                    |                          |                     |                             |                     |                     |                           |                           |                            |             |                  |                 |
|---|-------------------------------------------------------|--|--------------------|--------------------------|---------------------|-----------------------------|---------------------|---------------------|---------------------------|---------------------------|----------------------------|-------------|------------------|-----------------|
|   | (res                                                  |  | ♯of<br>Cond<br>ROs | Starting<br>Condensor RO | Condensor Fan<br>AO | Starting<br>Condenser Fault | #<br>Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit # | EXV Control | Suction<br>Group | Comp<br>Name/ID |
| ► | 1                                                     |  | 3                  | CND FAN 1                | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 1                          | Suct Sph    | 1                | 1               |
|   | 2                                                     |  | 3                  | CND FAN 2                | Not Used            | Not Used                    | 0                   | 2                   | Not Used                  | Not Used                  | 2                          | Suct Sph    | 2                | 2               |

**# of Cond ROs** – Total number of Relay Outputs of each compressor, in this example there are 3. The number of fans in each compressor does not have to be the same.

**Starting Condenser RO** – The starting condenser Relay Output. All the Relay Outputs specified for each circuit must follow consecutively to this point. In this example CND FAN 1 is the starting Relay Output for circuit 1 and the other 2 fans follow consecutively in the RO screen.

**Condenser Fan AO–**If a condenser fan AO was specified in this cell it would function as described in the example in section 7.74.3.6 RO Step Common with a Fan AO and Condenser Faults. There is no condenser fan AO in this example.

**Starting Condenser Fault**–If there were condenser faults specified in this cell they would function as described in the example in section 7.74.3.6 RO Step Common with a Fan AO and Condenser Faults. There are no condenser faults in this example.

# Cond Faults - Total number of Condenser Faults.

Cond Fan Bank – In this type of condenser all compressors should have a different fan bank.

|                                    | Condenser Info            | ormation                          |               |          |                                     |                |
|------------------------------------|---------------------------|-----------------------------------|---------------|----------|-------------------------------------|----------------|
| Condenser Type<br>RO Step Combined |                           |                                   | AO Starting S | Stage    | Fluid Coole                         | r Econo?<br>No |
|                                    | Sump Temperature Not Used | Control Con<br>• Disc PSI O Disc/ |               | Other SI |                                     |                |
| Condenser Reset                    |                           |                                   |               | í        | Started Comp<br>Common Fan B<br>Yes |                |
|                                    |                           |                                   |               |          | 165                                 |                |

Each compressor fan bank is controlled individually. The discharge pressure for each compressor is used to control condenser logic.

## **25.2.4 RO Step Combined**

The RO Step Combined has a bank of fans that are shared by two consecutive circuits. The number and location of the fans are specified in the Circuit Base screen. This is similar to the RO Step Individual set up except only every other compressor has a condenser fans associated with it.

| Information that relates to condensors on the circuit |   |                     |                          |                     |                             |                     |                     |                           |                           |                            |             |                  |                 |
|-------------------------------------------------------|---|---------------------|--------------------------|---------------------|-----------------------------|---------------------|---------------------|---------------------------|---------------------------|----------------------------|-------------|------------------|-----------------|
| Circu<br>(resel<br>butto                              | : | # of<br>Cond<br>ROs | Starting<br>Condensor RO | Condensor Fan<br>AD | Starting<br>Condenser Fault | #<br>Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit # | EXV Control | Suction<br>Group | Comp<br>Name/ID |
| 1                                                     |   | 3                   | FAN 1&3 #1               | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 1                          | Suct Spł    | 1                | 1               |
| 2                                                     |   | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 2                          | Suct Spł    | 2                | 2               |
| 3                                                     |   | 3                   | FAN 2&4 #1               | Not Used            | Not Used                    | 0                   | 3                   | Not Used                  | Not Used                  | 3                          | Suct Spł    | 3                | 3               |
| 4                                                     |   | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 3                   | Not Used                  | Not Used                  | 4                          | Suct Sph    | 4                | 4               |

Circuit 1 and 2 will share the same fan bank specified in the 'Cond Fan Bank' cell. Circuit 3 and 4 will also share the same fan bank specified. The highest discharge pressure between the two compressors on each respective circuit will be used as the control pressure for their fan bank.

#### **Condenser Faults**

If any of these digital inputs are ON for the time specified in Setpoint #90 if active, then both compressors sharing that condenser will we will be locked out and an alarm message will be generated. This example has no condenser faults.

## 25.2.5 Modulating

## 25.2.5.1. Modulating Common

|                                     | Condenser In                 | formation                                                                                |                                                            |
|-------------------------------------|------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Condenser Type<br>Modulating Common |                              | AO Modulating Valve<br>CND1 VFD%                                                         | Fluid Cooler Econo?                                        |
|                                     | Sump Temperature<br>Not Used | Control Condenser On:<br>Disc PSI    Disc/Suct Ratio   Ott                               | herSI                                                      |
| Condenser Reset                     |                              | Start Control on Analog Output:<br>C Above Control Zone<br>Below, But Near, Control Zone | Newly Started Comp Controls<br>Common Fan Bank<br>Yes O No |
|                                     |                              | Defeuth Aneles Oute                                                                      |                                                            |

This type of condenser uses water for condenser cooling. The AO Modulating Valve will modulate the cold water valve based upon the system's highest discharge pressure.

| 48 | CND ADJ DELAY<br>(Modulating Type) | If active this is the time in seconds between condenser adjustments to the AO. If inac-<br>tive, then 30 seconds will be used as the delay.<br>If type is DELAY: (required for condenser relay delays).<br>-MIN VFD Opening cell contains the time delay between turning on a relay and moving<br>the AO to its minimum position (Setpoint #52).<br>-MAX VFD Opening cell contains the time delay between turning off a relay and moving<br>the AO to 100%. |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49 | CND START %<br>(Modulating Type)   | If active, then the value is the starting % for the AO when the RO that is tied to it turns on. The value in the "Time (SEC)" cell is the AO starting stage. If no Relays are used when CMP starts set value.                                                                                                                                                                                                                                               |
| 50 | CND TARG<br>(Modulating Type)      | Target logic will try to maintain by modulating the AO.<br>SP must be set up as target type. Hi/Low zones are used for setting control zone.<br>If target type in HP mode, setback is added to target.                                                                                                                                                                                                                                                      |
| 51 | CND ADJ DIV<br>(Modulating Type)   | Controls scaling of the amount the AO is adjusted (usually 1). The larger the number the smaller the AO adjustment as the adjustment will be divided by this value.                                                                                                                                                                                                                                                                                         |

| 52 | CND MIN %<br>(Modulating Type)    | Minimum AO % allowed.<br>If compressor is off, then check the "Time (SEC)" field:<br>If 0, then the AO % will be set to the value of this Setpoint. If 2 and the run/stop is set<br>to run, then set the AO % to 100%, else set the AO % to 0%. This option is selected in<br>the "Default Valve Opening % when Comp. is OFF" box in the condenser information<br>section in the MAG HVAC screen. |
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53 | CND ROC-<br>(Modulating Type)     | Maximum negative rate of change allowed. If the rate of change is less than this Set-<br>point, then stop modulating the AO. The absolute value of this Setpoint also serves as<br>the maximum positive rate of change allowed. If the rate of change is greater than the<br>absolute value of this Setpoint, then stop modulating the AO.                                                        |
| 54 | CND ADJ MULT<br>(Modulating Type) | Controls scaling of the amount the AO is adjusted. The larger the number the larger the AO adjustment as the adjustment will be multiplied by this value.                                                                                                                                                                                                                                         |
| 55 | CND MIN ADJ<br>(Modulating Type)  | The value in this Setpoint is the minimum % the AO will be modulated when a change is made.                                                                                                                                                                                                                                                                                                       |

Note 1: The purpose of Setpoint #193 'CND HI/LO ZONE' and the delays in the MAX AND MIN VFD Opening cells for Setpoint #48 'CND ADJ DELAY' are to prevent repeated cycling of additional stages.

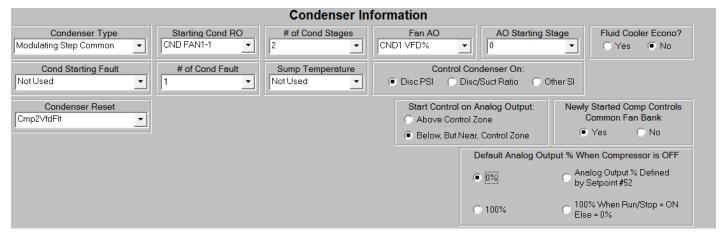
Note 2: The purpose of Setpoint #194 'CND 2nd ZONE' is to prevent the discharge pressure from over shooting the target (Setpoint #50 'CND TARG'). The way the logic works is if the discharge pressure is in the 2nd Zone and the pressure is falling less than twice the CND ROC- (Setpoint #53 'CND ROC-') then a negative adjustment will be made to the AO. If the discharge pressure is raising more than twice the rate of change (Setpoint #53) then a positive adjustment will be made to the AO.

Note 3: The value in the "AO Starting Stage" cell under the MAG HVAC screen in the condenser info section is the stage that has to be turned on to begin modulating the AO.

**The following applies to both the modulating common and individual water condenser types:** The 'Default Valve Opening % when Comp. is OFF' cell can be used to set the valve (1) to be completely closed (0%), (2) the value of Setpoint #52 (Valve % defined by Setpoint #52), or (3) completely open (100% if the Run/Stop indicator = ON else = 0%).

The delay timer will be decremented by a standard value of 1 every second, however if the control discharge pressure is more than 15.0 psi (1.5 bar) away from the target Setpoint #50, then the delay will be decremented by 2; if more than 20.0 psi (2.0 bar) away from the target then the delay will be decremented by 4.

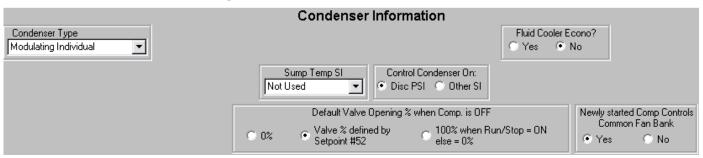
When the delay counts down to zero, an adjustment will be made based on the equation: (Control discharge pressure – Setpoint #50) × Setpoint #54 ÷ Setpoint #51 = Adjustment Value.


When the control discharge pressure is greater than Setpoint #50 plus the value in the high zone: If the control discharge pressure rate of change is dropping too fast (more than twice the value of Setpoint #53), then close the valve by the calculated adjustment. If the control discharge pressure rate of change is dropping too slowly (more than the value of Setpoint #53), then open the valve by the calculated adjustment. Else make no adjustment.

When the control discharge pressure is less than Setpoint #50 minus the value in the low zone: If the control discharge pressure rate of change is increasing too fast (more than twice the value of Setpoint #53), then close the valve by the calculated adjustment. If the control discharge pressure rate of change is increasing too slowly (more than the value of Setpoint #53), then open the valve by the calculated adjustment. Else make no adjustment.

When the control discharge pressure is within the zone: If the control discharge pressure rate of change is increasing more than the value of Setpoint #53, then close the valve by 1 percent. If the control discharge pressure change is decreasing more than the value of Setpoint #53, then open the valve by 1 percent.

**Modulating Condenser Type:** If heat pump and the mode is HEAT (not in defrost) all condenser relays will be turned on and the VFD set to 100% when compressor is turned on. If the control pressure is above the control zone, the condenser will unload; if below the control zone the condenser will load else there will be no change.


## 25.2.6 Modulating Step Common



When a RO is being used with an AO the AO will key off the RO turning on. The RO will turn on when the discharge pressure enters the bottom of the CND HI/LO ZONE (Setpoint #193). At that time the AO will move to its starting % (Setpoint #49). The AO will stay at its starting % until the discharge pressure gets outside the top of the CND HI/LO ZONE (Setpoint #193). At that point the AO will modulate based on Setpoints #51, #53-55. Now if there are 2 RO's tied to the AO and the "AO Starting Stage" is 1 then once the AO gets to 100% the 2nd RO will be turned on after a delay (value in the "MIN VFD Opening" cell for Setpoint #48) and the AO will be set back to its minimum % (Setpoint #52) and then modulate as described above. Now if the pressure begins to fall and goes below the CND HI/LO ZONE (Setpoint #193) the AO will modulate. Once the AO gets to its minimum % (Setpoint #52) the 2nd RO will be turned off after a delay (value in the "MAX VFD Opening" cell for Setpoint #48) and the AO will be set back to 100% and continue to modulate as needed.

If the "AO Starting Stage" is 2 then when the discharge pressure enters the bottom of the CND HI/LO ZONE (Setpoint #193) the 1st RO (stage 1) will be turned on. The 2nd RO will turn on once the discharge pressure gets outside the Heating Info CND HI/LO ZONE (Setpoint #193) and the delay has been met (value in the "MIN VFD Opening cell" for Setpoint #48) at that time AO will be set to its starting % (Setpoint #49). If the discharge falls below the CND HI/LO ZONE (Setpoint #193) the AO will begin to modulate. Once the AO reaches its minimum % (Setpoint #52) it will turn off the associated RO after a delay (value in the "MAX VFD Opening" cell for Setpoint #48). The 1st RO will remain on until the discharge pressure falls below the CND HI/LO ZONE (Setpoint #193) and the delay has been met (value in the "MAX VFD Opening" cell for Setpoint #48).

#### 25.2.6.1. Modulating Individual



This type of condenser uses water to provide cooling to the compressors. The AO Modulating Valve will modulate the cold water based upon this discharge pressure for each circuit. You may also select Relay Outputs to be turned ON/OFF while modulating the Analog Output.

The individual condensers must be set up in the Circuit Base screen.

The control will be similar to the Modulating Common type, except that the discharge pressure for each circuit will control its own condenser.

## 25.2.7 RO Shared

|                             | Condenser In                 | formation             |             |                                                      |
|-----------------------------|------------------------------|-----------------------|-------------|------------------------------------------------------|
| Condenser Type<br>R0 Shared |                              | AO Star<br>1          | rting Stage | Fluid Cooler Econo?                                  |
|                             | Sump Temperature<br>Not Used | Control Condenser On: |             |                                                      |
| Condenser Reset             |                              |                       | Ċ           | Started Comp Controls<br>common Fan Bank<br>Yes O No |

The RO Shared condenser has banks of fans that are shared between two consecutive circuits. The number and location of the fans are specified under the Circuit Base screen. This is similar to the RO Step Individual set up. Circuits 1 and 2 will share the fan bank that is specified in the circuit 1 grid in the Circuit Base screen. The highest discharge pressure of these two compressors will be used to control this bank of fans. Circuits 2 and 3 will share the fan bank that is specified in the circuit 2 grid in the Circuit Base screen. The highest discharge pressure of these two compressors will be used to control this bank of fans. In a unit with three circuits, circuit three will not have a fan bank associated with it. It shares circuit 2's fan bank.

### 25.2.8 Dual V8

This is a special type of condenser. It is a common circuit control type with two stages of fans and VFD. The control of the fan speed will be different depending on whether one or two stages are on. All circuits are checked to calculate the control discharge pressure, and should be in the same fan bank.

If the control discharge pressure is less than Setpoint #45, then both condenser stages are off and the fan speed is zero.

If the control discharge pressure is greater than Setpoint #45 and less than Setpoint #46 stage 1 will be on. The fan speed will be equal the value of (Setpoint #55 minus Setpoint #54) divided by (Setpoint #46 minus Setpoint #45) and then multiplied by (control discharge pressure minus Setpoint #46) plus Setpoint #54.

If the control discharge pressure increases while in stage 1 above the value of Setpoint #46 plus Setpoint #48 for the time contain in Setpoint #49 stage 2 will be entered. Both relays will be on and the fan speed will be equal the value of (Setpoint #55 minus Setpoint #54) divided by Setpoint #46 and then multiplied by (control discharge pressure minus Setpoint #46) plus Setpoint #54.

If the speed of the condenser fan is less than Setpoint #54 it will be set to that value or if the speed of the condenser fan is greater than Setpoint #55 it will be set to that value.

## 25.2.9 Common VFD Fan w/Bypass

| Condenser Information                        |                                |                              |                                                          |          |                                             |  |  |
|----------------------------------------------|--------------------------------|------------------------------|----------------------------------------------------------|----------|---------------------------------------------|--|--|
| Condenser Type<br>Common VFD Fan w/ Bypass 💌 | Starting Cond RO<br>CND FAN1-1 | # of Cond Stages             | Fan AO         AO Starting           CND1 VFD%         1 |          | Fluid Cooler Econo?                         |  |  |
| Cond Starting Fault<br>Cmp1∨fdFlt ▼          | # of Cond Fault                | Sump Temperature<br>Not Used | Control Condenser On:<br>Disc PSI    Disc/Suct Ratio     | Other SI |                                             |  |  |
| Condenser Reset                              |                                |                              |                                                          |          | rted Comp Controls<br>mon Fan Bank<br>s ONo |  |  |

The Common VFD Fan with a Bypass type of condenser has one fan. All circuits will use this fan; make sure that all circuits in the Circuit Base point to the same common fan bank. The above setup shows that there is one condenser stage. However this type requires the following three consecutive Relay Outputs to be set up. For example:

| 1-5 | <br>VFD LOAD   |
|-----|----------------|
| 1-6 | <br>VFD BYPASS |
| 1-7 | <br>VFD ENABLE |

This type of condenser requires one condenser fault. If the fault occurs then the VFD will be bypassed and the fan will run at 100% if needed.

| 45 | CND STG1 ON<br>(RO Type)              | When the discharge pressure is above this value, turn on the first stage of the condenser fans.<br>'Time (sec)' field: (Applies to compressors with shared condensers) If non-zero, then the<br>compressor in startup state will not be in sole control of the condenser fans, it will control<br>off of highest discharge pressure. If zero, then compressor in startup will have sole condenser<br>control for 5 minutes. This option is selected in the 'Newly started Comp Controls Common Fan<br>Bank' box in the 'Condenser Information' panel under the MAGNUM screen. |  |  |  |
|----|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | PID MOD Individual<br>PID Step Common | Uses PID condenser control KP (Proportional). Setup as setpoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 46 | CND STG1 OFF<br>(RO Type)             | If stage 1 of condenser capacity is on and the discharge pressure drops below this value, then turn this stage off.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|    | PID MOD Individual<br>PID Step Common | If active, uses Multiplier for Ki adjustments, (Integral Delay). Setup as setpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 54 | CND MIN SPD<br>(RO Type)              | Minimum speed percentage for variable speed condenser control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|    | CND ADJ MULT<br>(Modulating Type)     | Controls scaling of the amount the AO is adjusted. The larger the number the larger the AO adjustment as the adjustment will be multiplied by this value.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 55 | CND MAX SPD<br>(RO Type)              | Maximum speed percentage for variable speed condenser control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|    | CND MIN ADJ (Mod-<br>ulating Type)    | Dd- The value in this Setpoint is the minimum % the AO will be modulated when a chang made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

#### Fan control when there is no fault:

The highest discharge pressure of all the compressors is the control value.

The first relay, VFD LOAD, is on and the second relay, VFD BYPASS, is off.

When the control discharge pressure is greater than the value of Setpoint #45, then the third relay (VFD ENABLE) will be turned on and the VFD will be set to the value of Setpoint #55. If the control discharge pressure decreases the VFD will be modulated between Setpoints #54 and #55 based upon the control discharge pressure.

Assume Setpoint values:

| 45 | CND STG1 ON  | 250 psi |
|----|--------------|---------|
| 46 | CND STG1 OFF | 170 psi |
| 54 | CND MIN SPD  | 20%     |
| 55 | CND MAX SPD  | 100%    |
| 90 | COND FAULT   | 30s     |

When the discharge control pressure is greater than 250 psi the relay VFD ENABLE will be on and the VFD on the fan will be set to 100%. If the discharge control pressure drops to 210, then the fan speed will be set to 60%. The discharge control pressure is half of its Cut In and Cut Out range (250 - 170 = 80 / 2 = 40 = 170 = 210) therefore, the VFD will be positioned to half of its range (100 - 20 = 80 / 2 = 40 + 20 = 60). The VFD will continue to be modulated in this matter until the discharge control pressure drops below 170. Then the VFD will be at 0% and relay VFD ENABLE will remain on. If the pressure goes above 170 the VFD will be modulated. For example if the discharge control pressure goes to 190.0 the VFD will be set to 50%.

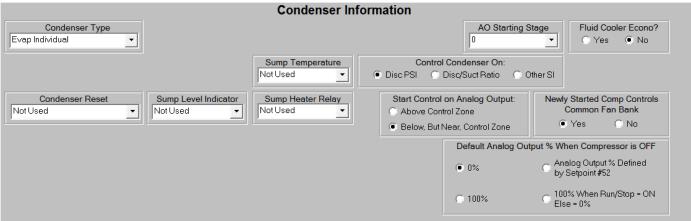
#### Fan control when a fault occurs:

If a fault occurs, an alarm message will be generated, relay VFD LOAD will Lock off, relay VFD ENABLE will be off, the VFD speed will be set to 0% and the bypass, VFD BYPASS, will be enabled if needed after waiting for 30 seconds, Setpoint #90. Once the fan bypass is enabled and the discharge control pressure goes above 250 psi the bypass will be turned on enabling the fan to run at 100% and it will remain on regardless of the discharge control pressure.

If the fault resets itself, and is no longer on, the state of VFD LOAD will be set to AUTO, the VFD BYPASS relay will be turned off and VFD will be enabled to control the fan speed if it is needed.

| 54 | CND MIN SPD | 20%  |
|----|-------------|------|
| 55 | CND MAX SPD | 100% |
| 90 | COND FAULT  | 30s  |

When the discharge control pressure is greater than 250 psi the relay VFD ENABLE will be on and the VFD on the fan will be set to 100%. If the discharge control pressure drops to 210, then the fan speed will be set to 60%. The discharge control pressure is half of its Cut In and Cut Out range (250 - 170 = 80 / 2 = 40 = 170 = 210) therefore, the VFD will be positioned to half of its range (100 - 20 = 80 / 2 = 40 + 20 = 60). The VFD will continue to be modulated in this matter until the discharge control pressure drops below 170. Then the VFD will be at 0% and relay VFD ENABLE will remain on. If the pressure goes above 170 the VFD will be modulated. For example if the discharge control pressure goes to 190.0 the VFD will be set to 50%.


#### Fan control when a fault occurs:

If a fault occurs, an alarm message will be generated, relay VFD LOAD will Lock off, relay VFD ENABLE will be off, the VFD speed will be set to 0% and the bypass, VFD BYPASS, will be enabled if needed after waiting for 30 seconds, Setpoint #90. Once the fan bypass is enabled and the discharge control pressure goes above 250 psi the bypass will be turned on enabling the fan to run at 100% and it will remain on regardless of the discharge control pressure.

If the fault resets itself, and is no longer on, the state of VFD LOAD will be set to AUTO, the VFD BYPASS relay will be turned off and VFD will be enabled to control the fan speed if it is needed.

## 25.2.10 Evaporative types of Condenser Control

Evaporative condensers are used to improve the condensers efficiency by spraying water over the condensing coil from above while air is blown up through the coil from below.



Two types are support:

- Evap Individual Step, has the same control logic as Modulating Individual.

- Evap Common, has the same control logic as Modulating Common.

In addition to the standard control logic, the evaporative spraying water requires addition input.

Sump Temperature, this sensor will provide the temperature of the sump, area where the spray water is held.

**Sump Level Indicator,** if set point #249 and a digital input is specified, if it is continually on for the time greater than the value of the safety time of set point #249 a Sump Low Level alarm will be generated and this condenser will locked off. If the digital goes to an off state and the condenser is locked off, its state will be changed to auto and the condenser will be available.

**Sump Heater Relay**, if this relay and sump temperature sensor is specified and set point #250 is active, this relay will be turned on and off based upon the values of set point #250.

## 25.2.11 RO Adaptive Bank– Air cooled Condenser Fan Control

Used to control the condenser fan relay outputs for a single compressor, multiple compressors on the same refrigerant circuit, or a bank of condenser fans for multiple refrigerant circuits. If single compressor the condenser fans are stage on/off based on the compressor discharge pressure. If multiple compressor or refrigerant circuit, then the high discharge of the running compressors is used to stage condenser fans.

|        | Relay Output Information Screen |                           |  |               |                   |                   |  |                               |          |             |         |  |  |  |
|--------|---------------------------------|---------------------------|--|---------------|-------------------|-------------------|--|-------------------------------|----------|-------------|---------|--|--|--|
| Number | Name                            | Slide Slide<br>Mult. Div. |  | Slide<br>Off. | Design<br>Suc.PSI | Design<br>Dis.PSI |  | EXV Start Type<br>(When Lead) |          | EXV L Adjus | Circuit |  |  |  |
| 1-3    | CND FAN 1                       |                           |  |               |                   |                   |  |                               | Standard |             |         |  |  |  |
| 1-4    | CND FAN 2                       |                           |  |               |                   |                   |  |                               | Standard |             |         |  |  |  |

#### Singe Compressor Information that relates to condensers on the circuit Circuit# Starting Cond Condenser Coil Suction # of Starting Condenser Fan # Cond Condenser Coil Tandem Comp Evaporator Condenser RO EXV Control EXV Name/ID (reset Cond AO Condenser Fault Faults Fan Temp #1 Temp #2 Group ROs Bank Circuit # button) CND FAN 1 Not Used Not Used 0 Not Used Not Used Suct Spht 1 .... 1

| Fand                   | em | Com                 | pressors                 |                     | Informat                    | ion that re      | elates to i         | condensers on the c       | ircuit                    |                           |                           |                  |                 |
|------------------------|----|---------------------|--------------------------|---------------------|-----------------------------|------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------|-----------------|
| Circi<br>(res<br>butto |    | # of<br>Cond<br>ROs | Starting<br>Condenser RO | Condenser Fan<br>AO | Starting<br>Condenser Fault | # Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit# | Evaporator<br>EXV Control | Suction<br>Group | Comp<br>Name/ID |
| 1                      |    | 2                   | CND FAN 1                | Not Used            | NotUsed                     | 0                | 1                   | NotUsed                   | Not Used                  | 1                         | Suct Spht                 | 1                | 1               |
| 2                      |    | 0                   |                          | Not Used            | Not Used                    | 0                | 1                   | Not Used                  | Not Used                  | 2                         | Suct Spht                 | 1                | 2               |

## Tandem Compressors- 2 Circuits

Circuit 1 and 2 will share the same fan bank specified in the 'Cond Fan Bank' cell. Circuit 3 and 4 will also share the same fan bank specified. The highest discharge pressure between the two compressors on each respective circuit will be used as the control pressure for their fan bank.

| Information that relates to condensors on the circuit |  |                    |                          |                     |                                              |   |     |                           |          |   |             |                  |                 |
|-------------------------------------------------------|--|--------------------|--------------------------|---------------------|----------------------------------------------|---|-----|---------------------------|----------|---|-------------|------------------|-----------------|
| button )                                              |  | ♯of<br>Cond<br>ROs | Starting<br>Condensor RO | Condensor Fan<br>AO | Starting #<br>Condenser Fault Cond<br>Faults |   | Fan | Condenser Coil<br>Temp #1 | Temp #2  |   | EXV Control | Suction<br>Group | Comp<br>Name/ID |
| 1                                                     |  | 3                  | FAN 1&3 #1               | Not Used            | Not Used                                     | 0 | 1   | Not Used                  | Not Used | 1 | Suct Spł    | 1                | 1               |
| 2                                                     |  | 0                  | Not Used                 | Not Used            | Not Used                                     | 0 | 1   | Not Used                  | Not Used | 2 | Suct Spł    | 2                | 2               |
| 3                                                     |  | 3                  | FAN 2&4 #1               | Not Used            | Not Used                                     | 0 | 3   | Not Used                  | Not Used | 3 | Suct Sph    | 3                | 3               |
| 4                                                     |  | 0                  | Not Used                 | Not Used            | Not Used                                     | 0 | 3   | Not Used                  | Not Used | 4 | Suct Sph    | 4                | 4               |

## 25.2.12 RO Adaptive Common – Air Cooled Condenser Fan Control

Used to control the condenser fan relay outputs for all the refrigerant circuits on the unit. This control logic finds the high discharge pressure on the running compressors and uses it to stage on/off the condenser fan relays.

|                                                                                                                                                                              | Magnum CENT Information Screen                                                          |            |                    |                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Information Panel Selector                                                                                                                                                   |                                                                                         |            |                    |                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| General Info 🔿 Compressor Info 🔿 Evaporator Info 💿 Condenser Info 🕤 Lockout Info 🔿 Boiler Info 🔿 CPXI Info                                                                   |                                                                                         |            |                    |                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| Condenser Information                                                                                                                                                        |                                                                                         |            |                    |                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| RD Adaptive Common     Image: Not Used       # of Cond Fault     # of Cond Stages       0     Image: Not Used                                                                | arting Fault Sump T<br>Not Used                                                         | emperature | Fan AO<br>Not Used | Start Control on Analog Output:<br>C Above Control Zone<br>Below, But Near, Control Zone<br>Newly Started Comp Controls<br>Common Fan Bank<br>C Yes  No |  |  |  |  |  |  |  |  |  |
| Default Analog Output % When Compressor is OFF<br>© 0% Analog Output % Defined<br>by Setpoint #52<br>C 100% C 100% When Run/Stop = 0N<br>Else = 0%<br>Condenser Fan Rotation | Control Condenser On:<br>Disc PSI<br>Disc/Suct Ratio<br>Diff PSI(Disc-Suct)<br>Other SI |            |                    |                                                                                                                                                         |  |  |  |  |  |  |  |  |  |

## 25.2.12.1. Adaptive Condenser Control Setpoints

Setpoint #45 "CND STG1 ON" – contains the value for turning on 1st condenser fan relay.

Setpoint #46 "CND STG2 OFF" - contains the value for turning off the 2nd condenser fan relay.

**Setpoint #47 "CND DIFF ON"** – contains the differential value for turning on the 2nd condenser fan., plus all the remaining condenser fan stages. This value is added to previous stage on value to calculate when to turn on the next condenser fan.

**Setpoint #48 "CND DIFF OFF"** – contains the differential value for turn off the 3rd condenser fan relay, plus all the remaining condenser fan stages. This value is added to the previous stage off value to calculate when to turn off the next condenser fan.

Setpoint #49 "CND STG1 OFF" – contains the value for turning off 1st condenser fan relay.

Setpoint #50 "CND TARG PSI" - contains the maximum adjusted value for turning on the last condenser stage.

A compressor must be operating for the condenser fans to operate. The definition of an operating compressor is a, compressor amps >= Low Amp limit or no amp sensor and compressor is in a running control state. The condenser relays (i.e. fans) will turn on based upon the value in setpoint STAGE 1 ON. When the discharge pressure exceeds this value, the first condenser relay is turned on. If additional condenser relays exist, they will be turned on when the pressure exceeds the previous cut in value (Stage 1 ON for the first stage) plus the value contained in STAGE DIFF ON setpoint.

Condenser relays (i.e. fans) will be turned off based upon the value in the setpoint STAGE 2 OFF (Stage 2 turn OFF point). As the discharge pressure is reduced, the condenser relay will be turned off based upon the STAGE 2 OFF setpoint, plus the value in STAGE OFF DIFF setpoint for each stage number above stage 2. Stage 1 of condenser staging will be turned off based upon the value in the setpoint (Stage 1 OFF).

|    | Setpoint Information Screen |       |     |     |                 |               |                              |                           |                             |                         |  |                                             |                                 |                     |  |
|----|-----------------------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|--|---------------------------------------------|---------------------------------|---------------------|--|
| #  | Name                        | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active |  | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint |  |
| 45 | CND STG1 ON                 | 200   | 190 | 220 | 0.5             | 0             | 1                            | 0                         | 0                           | Active                  |  | PSI GAGE                                    | View Only                       | Setpoint            |  |
| 46 | CNC STG2 OFF                | 170   | 170 | 220 | 0.5             | 0             | 0                            | 0                         | 0                           | Active                  |  | PSI GAGE                                    | View Only                       | Setpoint            |  |
| 47 | CND DIFF ON                 | 20    | 10  | 50  | 1               | 0             | 0                            | 0                         | 0                           | Active                  |  | PSI GAGE                                    | View Only                       | Setpoint            |  |
| 48 | CND DIFF OFF                | 10    | 5   | 50  | 1               | 0             | 0                            | 0                         | 0                           | Non-Active              |  | PSI GAGE                                    | View Only                       | Setpoint            |  |
| 49 | CND STG10FF                 | 175   | 170 | 195 | 0.5             | 0             | 0                            | 0                         | 0                           | Active                  |  | PSI GAGE                                    | View Only                       | Setpoint            |  |
| 50 | CND TARG PSI                | 225   | 220 | 240 | 0.5             | 0             | 0                            | 0                         | 0                           | Active                  |  | PSI GAGE                                    | View Only                       | Setpoint            |  |

## 25.2.12.2. Adaptive Control Logic

The Adaptive Condenser logic is a self-learning fan control. The adaptive self-learning logic offers reduced fan cycling and improved efficiency. The Adaptive Condenser Control Logic automatically adjusts the fan cut-in offset based upon the following criteria:

- If the last stage fan turned on (including stage 1) is cycled off in 10 minutes or less, then an Adaptive Offset value will be incriminated by 5 PSI. This increases the stage 1 turn on value ("CND STG1 ON" plus Adaptive Offset) which in turn increases all the remaining fan on values. The Adaptive Offset will continue to increase, until fan cycling ceases or the adjusted turn on value for the last fan stage is greater than setpoint #50 "LastStgMax".
- 2. The Adaptive Offset value will be decreased by 5 PSI if the last fan to be turned on has not cycled off within 1 hour. The Adaptive Offset will continue to decrease by 5 PSI every 10 minutes unless fan cycling begins again.

The Adaptive Control Logic will only affect the condenser fan turn on logic, it will not affect the fan turn off logic.

## 25.2.12.3. Adaptive Rotation Logic

The adaptive condenser logic can be setup to rotate the condenser fans based on first on/first off or the lead condenser fan can be forced to any one of the condenser fans. Setpoint #46 is used to setup/control the type of rotation.

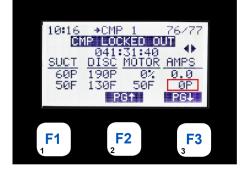
If setpoint #46 is not setup as "TIME" type of setpoint no rotation is done and lead condenser fan is forced to the first condenser fan relay output.

If setpoint #46 is setup as a "TIME" type

- And the value of the "Time" column is Zero, then first on/first off rotation is performed. The rotation occurs when a fan is required to cycle off by the pressure cut out value.
- And the value of the "Time" column is greater than zero and less than the max condenser stages, the lead condenser fan is set to the value in the "Time" field. For example, if the time column contains a 2, then the lead condenser fan is the second condenser fan in the relay output sequence.
- And if the value if the "Time" column is greater than the max condenser stages, the lead condenser fan is force to first condenser fan in the relay output sequence.

## 25.2.12.4. Viewing on MCS-CONNECT and MCS-MAGNUM LCD KEYPAD

## 25.2.12.4.1. MCS-Connect Display


New columns in the compressor section are being added to the control status window where the adaptive offset values will be display.

| 🔲 System Status           |           |                   |               |             |                   |                 |                     |         | <b>•</b>    |
|---------------------------|-----------|-------------------|---------------|-------------|-------------------|-----------------|---------------------|---------|-------------|
| Capacity<br>Control State | Time      | Wanted/<br>Actual | Step<br>Delay | Wanted<br>% | Rate of<br>Change | Contr           | ol On               | Mode    | Ref Type    |
| UNIT IS HOLDING           | 00:04:12  | 0/0               | 180           | 0.0         | 0.0               | ChilWtrOu       | t= 46.0F            | COOLING | R22         |
| State                     | Time      | PSI Diff          | FLA %         | Steps       | Lead?             | Manual<br>FLA % | Cond. A<br>Cut In C |         |             |
| 1)FAST UNLOADING          | 00:04:12  | 97.0P             | 78%           | 0           | Yes               | N/A             | 5.0P                |         |             |
| 2)SAFETY TRIPPED          | 00:04:12  | 97.0P             | 78%           | 0           |                   | N/A             | 0.0P                |         |             |
| Suction                   | Saturated | Suction           | Disc          | Saturated   | Disc              | Subcoolin       |                     | Liquid  | Saturated   |
| Temp                      | Suction   | Superheat         | Temp          | Discharge   | Superheat         | Subcoolin       | y                   | Temp    | Liquid Temp |
| 1) 45.0                   | 33.7      | 136.3             | 152.0         | 101.3       | 50.7              | -3.7            |                     | 105.0F  | 101.3       |
| 2) 50.0                   | 33.7      | 136.3             | 152.0         | 101.3       | 50.7              | -3.7            |                     | 105.0F  | 101.3       |

## 25.2.12.4.2. MCS-MAGNUM LCD KEYPAD

The adaptive Offset value can be viewed on the MCS-Magnum LCD/Keypad by selecting the "Status" option from the Menu screen. Once in the "Status" screens page down to the compressor 1st screen showing Compressor state, state timer, Suct, Disch, OPD, and Motor values. Then press the right arrow button one time to scroll over to view the AMPS. On the second line below the AMPS heading (not the first line below the heading which displays the comp amps) the Adaptive Offset value is displayed.





## Chapter - 26. Condenser Logic using PID Control

Required to have the software below or later version

- Config version 18.01T or higher
- Connect version 18.31.15 or higher
- Firmware HVAC 17.62R2 or higher

PID control will turn an analog output into a stand alone PID controlled output. This output will have a controlling sensor that modulates the AO to a maintain target. This logic will run all the time. Setpoint Definitions

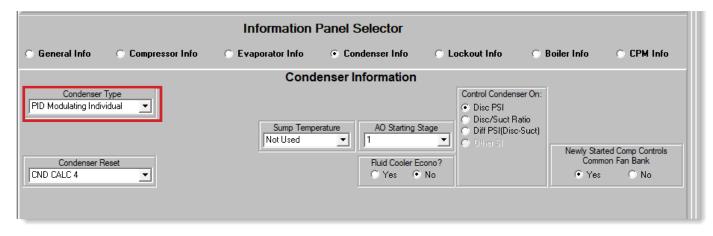
#### 26.1. Setpoint Definitions used for Condenser PID Control Logic

| SP# | SETPOINT NAME | DESCRIPTION                                                                                                                                |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 45  | COND Kp       | Kp is proportional change to discharge psi.                                                                                                |
|     |               | = Control feedback change from last calculation * Setpoint Value.                                                                          |
| 46  | COND Ki       | Ki is the integral change to discharge psi taken at seconds interval specified in time field.                                              |
|     |               | = Condenser psi difference from Target * Setpoint Value.                                                                                   |
| 47  | COND Kd       | Kd is derivate changed. The time field specifies the ROC time interval.                                                                    |
|     |               | = Last condenser psi – Current condenser psi * Setpoint Value.                                                                             |
| 49  | COND START%   | Specifies the condenser starting speed.                                                                                                    |
| 50  | COND FAN TARG | Specifies the condenser discharge psi target. The target should provide a discharge tem-<br>perature min of 140 F for good oil separation. |
|     |               | (For 134a recommended min setpoint is 130)                                                                                                 |
|     |               | (For R410a recommended min setpoint is 325)                                                                                                |
| 52  | COND FAN MIN  | Condenser fan minimum speed % allowed to run                                                                                               |
| 55  | COND MAX ADJ  | Condenser fan maximum ± adjustment.                                                                                                        |

## 26.1.1 Recommended Setpoint Range (134A)

| SP# | NAME          | VALUE | MIN | MAX | ADJ   | TIME  | MAX         | SELECT         | ні   | LOW  | SET  |
|-----|---------------|-------|-----|-----|-------|-------|-------------|----------------|------|------|------|
|     |               |       |     |     | VALUE | (SEC) | TIME<br>ALW | # DEC          | ZONE | ZONE | BACK |
| 45  | COND Kp       | .05   | .01 | .10 | 0.01  | 0     | 0           | DEC-<br>02NOCH |      |      |      |
| 46  | COND Ki       | .05   | .01 | .10 | 0.01  | 60    | 900         | DEC-<br>02NOCH |      |      |      |
| 47  | COND Kd       | .05   | .01 | .10 | 0.01  | 5     | 20          | DEC-<br>02NOCH |      |      |      |
| 49  | COND START%   | 59%   | 16  | 80  | 1     | 1     | 100         | HUMD or %      |      |      |      |
| 50  | COND FAN TARG | 132P  | 125 | 175 | 1     | 1     | 1           | PSI GAGE       | 4    | 4    |      |
| 52  | COND FAN MIN  | 18%   | 18  | 50  | 0.5   | 1     | 1           | HUMD or %      |      |      |      |
| 55  | COND MAX ADJ  | 10%   | 1   | 20  | 1     | 0     | 0           | HUMD or %      |      |      |      |

## 26.1.2 HVAC/RTU PID CONTROL DESCRIPTION


- Kp is calculated every second.
- Kd is calculated every sec based on the ROC over time specified in 'TIME' field.
- Ki adjustment is only allowed based on time delay specified in 'TIME' field.
- The Condenser pressure target is maintained within the 'VALUE' + 'HI ZONE' or 'LOW ZONE".
- Kp, Kd & Ki are added together and a change is made if result is >1.

|                                                                                                                                                                                                                |                  |                 |               |               |                  |                        |                        |         | Control Zone<br>No Ki adj mac<br><sup>315.0</sup><br>314.8 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------------|---------------|------------------|------------------------|------------------------|---------|------------------------------------------------------------|--|--|
| SETPOINT<br>#                                                                                                                                                                                                  | SETPOINT<br>NAME | ADJUST<br>VALUE | time<br>Field | PRINT<br>CHAR | SETPOINT<br>TYPE | HI<br>ZONE             | LOW<br>ZONE            | SETBACK | 304.6<br>314.4                                             |  |  |
| 45                                                                                                                                                                                                             | COND Kp          | 0.07            | 0             | DEC 2         | SETPOINT         | -                      | -                      | -       | 314.2                                                      |  |  |
| 46                                                                                                                                                                                                             | COND Ki          | 0.05            | 120           | DEC 2         | SETPOINT         | -                      | -                      | -       | 313.8<br>313.6                                             |  |  |
| 47                                                                                                                                                                                                             | COND Kd          | 0.03            | 5             | DEC 2         | SETPOINT         | 0                      | 0                      | 0       | 313.4<br>313.2                                             |  |  |
| 49                                                                                                                                                                                                             | COND START%      | 25              | 1             | HUM%          | SETPOINT         | -                      | -                      | -       | 313.0<br>312.8                                             |  |  |
| 50                                                                                                                                                                                                             | COND FAN TARG    | 322             | 1             | PSI G         | TARGET           | 3                      | 2                      | -       | 312.6<br>312.4<br>312.2                                    |  |  |
| 52                                                                                                                                                                                                             | COND FAN MIN     | 15.5            | 1             | HUM%          | SETPOINT         | -                      | -                      | -       | 312.2                                                      |  |  |
|                                                                                                                                                                                                                | ROC TIM          | e interval      |               | Ki ADJ DLY    |                  | CTL ZN HI<br>CTL ZN LC | GH= 315.0<br>W = 310.0 |         | 311.6<br>311.4<br>311.2                                    |  |  |
| SET POINTS ABOVE USED RTU SOFTWARE<br>4 ton scroll, 3 phase, frequency drive, 65 to 100%<br>Condenser Fan ECM motor 15.5 to 100%<br>Set Point 50 value should result in discharge temp >140°F (Oil Separation) |                  |                 |               |               |                  |                        |                        |         |                                                            |  |  |
|                                                                                                                                                                                                                |                  |                 |               |               |                  |                        | ]                      |         | 310.2<br>310.0                                             |  |  |

## 26.1.3 Example: SETPOINT INTERACTIONS & DEFINATIONS

## 26.1.4 PID Modulating Individual

- Each compressor will have its own condenser Analog Outputs associated with it.
- <u>The Analog Output for each circuit is modulated</u> based on its own <u>discharge pressure Rate of</u> <u>Change.</u>
- It can also be <u>controlled on a selected sensor input</u>.
- · You may also select Relay Outputs to be turned ON/OFF while modulating the Analog Output.
- PID control will turn an analog output into a stand alone PID controlled output.
- This output will have a controlling sensor that modulates the AO to a maintain target.
- This logic will run all the time.



#### Setpoints used for PID Mod Individual and PID Step Common

| 45 | CND STG1 ON<br>(RO Type)              | When the discharge pressure is above this value, turn on the first stage of the condenser fans.<br>'Time (sec)' field: (Applies to compressors with shared condensers) If non-zero, then<br>the compressor in start-up state will not be in sole control of the condenser fans, it will<br>control off of highest discharge pressure. If zero, then compressor in start-up will have sole<br>condenser control for 5 minutes. This option is selected in the 'Newly started Comp Controls<br>Common Fan Bank' box in the 'Condenser Information' panel under the MAGNUM screen. |
|----|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | PID MOD Individual<br>PID Step Common | If active, the value is the multipiler for the Proportional(Kp) adjustment, <u>Setup as Setpoint Type</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46 | CND STG1 OFF<br>(RO Type)             | If stage 1 of condenser capacity is on and the discharge pressure drops below this value, then turn this stage off.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | PID MOD Individual<br>PID Step Common | If active, uses Multiplier for Ki adjustments (Integral Time Delay).<br><u>Setup as Time Field</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47 | CND DIFF ON<br>(RO Type)              | Differential pressure added to Setpoint #45 to set the threshold at which each additional stage of condenser capacity will turn on.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | PID MOD Individual<br>PID Step Common | If active, use Multiplier for Kd adjustments, <u>Setup as Time Field</u> -<br><u>Time (sec) field is ROC window</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 50 | CND TRGT<br>(Modulating Type)    | Target logic will try to maintain modulating the AO.<br>SP must be set up as target type and use the Hi/Low zones for the target control zone.<br>If target type in Heat Pump mode, setback is added to target.                                                                                                                                                                                            |
|----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | LO AMB SUMP OFF<br>(RO Type)     | If active and ambient temperature is less than the value of this Setpoint, then the sump<br>pump relay will be locked off if it is the starting condenser Relay Output. When the<br>ambient temperature rises above the value of this Setpoint plus two times the value in<br>Setpoint #192 "FRZ TEMP DIFF" if active (hard coded 15°F if inactive), then the sump<br>pump relay will be allowed on again. |
| 52 | CND MIN %<br>(Modulating Type)   | Minimum AO % allowed.<br>If compressor is off, then check the "Time (SEC)" field:<br>If 0, then the AO % will be set to the value of this Setpoint. If 2 and the run/stop is set to<br>run, then set the AO % to 100%, else set the AO % to 0%. This option is selected in the<br>"Default Valve Opening % when Comp. is OFF" box in the condenser information section<br>in the MAG HVAC screen.          |
| 55 | CND MAX SPD<br>(RO Type)         | Maximum speed percentage for variable speed condenser control.                                                                                                                                                                                                                                                                                                                                             |
|    | CND MIN ADJ<br>(Modulating Type) | The value in this Setpoint is the minimum % the AO will be modulated when a change is made.                                                                                                                                                                                                                                                                                                                |

#### Circuit Base settings

|   | Intermation that relates to condensers on the circuit |                     |                          |                     |   |                           |  |                  |                     |                           |                           |                           |                           |             |
|---|-------------------------------------------------------|---------------------|--------------------------|---------------------|---|---------------------------|--|------------------|---------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------|
|   | Circuit#<br>(reset<br>button)                         | # of<br>Cond<br>ROs | Starting<br>Condenser RO | Condenser Fan<br>AO | 1 | Starting<br>Condenser Fau |  | # Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit# | Evaporator<br>EXV Control | Suct<br>Gro |
| • | 1                                                     | 2                   | CND FAN 1                | Not Used            | / | Not Used                  |  | 0                | 1                   | Not Used                  | Not Used                  | 1                         | Suct Spht                 | 1           |

### 26.1.5 **PID Step Common**

- This type of condenser has a *common fan bank for the system.*
- The control will be on the systems *highest discharge pressure.*
- The Relay Outputs are also supported along with an Analog Output.
- PID control will turn an analog output into a stand alone PID controlled output.
- This output will have a controlling sensor that modulates the AO to a maintain target.
- This logic will run all the time.

| Magnum CENT Information Screen                                                                                                                   |                                                                                         |                               |                                                                                                                                          |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                                                                                                                  | Information Panel Selector                                                              |                               |                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| O General Info O Compressor Info                                                                                                                 | C Evaporator Info 💿 Condenser Info                                                      | C Lockout Info C B            | oiler Info 💿 CPM Info                                                                                                                    |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                  | Condenser Information                                                                   | _                             |                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Condenser Type<br>PID Modulating Individual                                                                                                      | Sump Temperature<br>Not Used                                                            | Difference France             | Start Control on Analog Output:<br>Above Control Zone<br>Below, But Near, Control Zone<br>Newly Started Comp Controls<br>Common Fan Bank |  |  |  |  |  |  |  |  |  |
| AO Starting Stage Condense<br>0Not Used                                                                                                          | er Reset                                                                                | Fluid Cooler Econo?<br>Yes No | C Yes   No                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Default Analog Output % When Compressor is OFF<br>O% Analog Output % Defined<br>by Setpoint #52<br>O 100% 0 100% Vhen Run/Stop = ON<br>Else = 0% | Control Condenser On:<br>Disc PSI<br>Disc/Suct Ratio<br>Diff PSI(Disc-Suct)<br>Other SI |                               |                                                                                                                                          |  |  |  |  |  |  |  |  |  |

## 26.2. PID CONTROL

- Control Target SI, AO, or Setpoint used as the target the AO will try to maintain.
- AO Min to Max value the AO can modulate between.
- Proportional(Kp)
  - Multiplier for Kp adjustments.
- Integral(Ki)
   Multiplier and delay between Ki Adjustments.
- **Derivative(Kd)** Multiplier and time in seconds interval to calculate Kd.
- Adjustment Limits

Min and Max adjustments allowed to the AO per adjustment, both negative and positive.

Under the Analog Outputs window in the MCS Connect software. You'll find an AO PID tab that will show all of the PID CONTROL AOs and all of the calculated adjustments being made to those Analog Outputs. Here you will be able to see all three adjustments being made to the PID. This will assist you in any fine tuning required for the given analog output.

| Basic Advanced AO PID |      |            |        |        |        |             |          |          |            |  |  |  |  |  |
|-----------------------|------|------------|--------|--------|--------|-------------|----------|----------|------------|--|--|--|--|--|
|                       |      | Analog     |        | Manual | Total  | Proportiona | Integral | Integral | Derivative |  |  |  |  |  |
| A                     | 4O # | Outputs    | Value  | Status | Adj.   | Adj.        | Delay    | Adj.     | Adj.       |  |  |  |  |  |
| Μ                     | -1   | COMP1 SPD% | 56.5%  | AUTO   | 1773.2 | 138.94      | 0        | 131.25   | 138.74     |  |  |  |  |  |
| Μ                     | - 2  | COMP2 SPD% | 56.5%  | AUTO   | 1798.6 | 172.03      | 0        | 166.97   | 123.36     |  |  |  |  |  |
| Μ                     | -3   | Exv#1-PID  | 42.3%  | AUTO   | 1412.9 | 174.76      | 0        | 123.58   | 125.92     |  |  |  |  |  |
| Μ                     | - 4  | Exv#2-PID  | 51.0%  | AUTO   | 1387.4 | 177.17      | 0        | 172.01   | 138.94     |  |  |  |  |  |
| 1.                    | -1   | CND1 VFD%  | 100.0% | AUTO   | 261.8  | 166.94      | 0        | 177.18   | 133.60     |  |  |  |  |  |
| 1.                    | -2   | CND2 VFD%  | 99.6%  | AUTO   | 1233.6 | 174.57      | 0        | 146.59   | 126.00     |  |  |  |  |  |
| 1.                    | -3   | WTR PUMP1% | 0.0%   | AUTO   | 1670.6 | 174.62      | 0        | 128.54   | 141.49     |  |  |  |  |  |
| 1.                    | -4   | WTR PUMP2% | 100.0% | AUTO   | 1745.9 | 169.44      | 0        | 123.55   | 138.94     |  |  |  |  |  |
| 2                     | -1   | SCExv1-PID | 0.0%   | AUTO   | 1746.4 | 125.93      | 0        | 123.56   | 169.51     |  |  |  |  |  |
| 2.                    | -2   | SCExv2-PID | 0.0%   | AUTO   | 1414.9 | 128.54      | 0        | 179.89   | 174.62     |  |  |  |  |  |

## **Chapter - 27. Electronic Expansion Valve Control**

## 27.1. Electronic Expansion Valve Control Logic (EXV)

The function of the thermostatic expansion valve is to hold a constant evaporator superheat.

The EXV is set up in MCS-Config as follows:

|       | Relay Output Information Screen |        |  |  |  |                   |  |                             |                          |             |                      |                      |  |  |  |
|-------|---------------------------------|--------|--|--|--|-------------------|--|-----------------------------|--------------------------|-------------|----------------------|----------------------|--|--|--|
| Nu    | Number Name                     |        |  |  |  | Design<br>Suc.PSI |  | Nominal<br>Tonnage(of Step) | EXV Start<br>(When Lead) | Туре        | EXV Load<br>Adjust % | EXV UnId<br>Adjust % |  |  |  |
| 🥒 M-1 |                                 | COMP 1 |  |  |  |                   |  | 0                           | 28.5                     | Step w\ EXV |                      |                      |  |  |  |

For relay outputs for Type of Step w\ EXV:

'EXV Start (when Lead)' cell contains the EXV start percentage if this relay is the lead compressor.

'EXV Load Adjust %' cell contains the percentage of adjustment to the EXV when a step is added.

'EXV Unld Adjust %' cell contains the percentage of adjustment to the EXV when a step is deleted.

|    |                      |             |                     |                        |         |               |       |                       |       |                        |                | MA                | GN            | UIV      | I C               | ircu       | it E  | Base               | S     | creen                 |                            |             |           |              |                     |                |
|----|----------------------|-------------|---------------------|------------------------|---------|---------------|-------|-----------------------|-------|------------------------|----------------|-------------------|---------------|----------|-------------------|------------|-------|--------------------|-------|-----------------------|----------------------------|-------------|-----------|--------------|---------------------|----------------|
|    |                      |             |                     |                        |         |               |       |                       |       |                        | _              | ini               | onnaŭ         | n tha    | at rela           | ites to co | mpre  | essors on          | the   | circuit               |                            |             |           |              |                     |                |
|    |                      | eset        |                     | Starting<br>Compressor |         | Part<br>Windi | ing   | Start<br>Unio<br>Bypa | ad    | Fast<br>Unio           | ıder           | Type of L         | LS :          | nd L     | LS                | Economi    | zer   | Econo<br>Control   |       | Unloading<br>Stages   | Loader<br>Type             | HGB         | HG<br>Reł | neat         | Liquid<br>Injection | Oil<br>Equalia |
|    | 1                    |             | 5 (                 | COMP 1                 |         | No            |       | No                    |       | No                     |                | EXV&LLS           | . 1           | 0        | 1                 | No         |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
| ►  | 2                    |             | 5 (                 | COMP 2                 |         | No            |       | No                    |       | No                     |                | EXV&LLS           |               | 0        | 1                 | No         |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | 3                    |             | 1 0                 | Not Used               |         | No            |       | No                    |       | No                     | No             |                   | 1             | 0        | 1                 | No         |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | 4                    |             | 0 1                 | Not Used               |         |               |       | No                    |       | No                     |                | only              | 1             | 0        |                   |            |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | 5                    |             |                     | Not Used               |         |               |       | No                    |       |                        |                | V&LLS<br>V only   | ······        | 0        | I                 |            |       | Slide %            |       | 0                     | Unloader                   | None        | No        | _            | No                  | No             |
|    | 6                    |             |                     | Not Used 👘             |         |               |       | No                    |       |                        |                | None              | -             | 0        | 1                 |            |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | 7                    |             | 0 1                 | Not Used 👘             |         | No            |       | No                    |       | No                     |                | None              | N             | ۹٩       | 1                 |            |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | 8                    |             |                     | Not Used               |         | No            |       | No                    |       | No                     |                | None              |               | No<br>La | 1                 | No         |       | Slide %            |       | 0                     | Unloader                   | None        | No        |              | No                  | No             |
|    | (res                 | uit #<br>et | Alarm F             | ?elay                  | Comp    | Proof         |       | M                     |       | r Spee<br>late Hi<br>O |                | Compre<br>speed I | essor         | ct Ou    | <u> </u>          | e Closed   | or In | puts per<br>Pump I |       |                       | / Output                   | Flow        |           | Circ<br>Pu   | cuit<br>mp/Valve    | Loa<br>Valv    |
|    | 1                    |             | NotUs               | od                     | NotUs   | and a         |       | N                     | ot U: | od                     |                | NotUs             | od            |          | Not l             | lood       |       | DISAB              | 1 5 1 | EM                    | /1 %                       | Not Used    |           | Mol          | t Used              | Not            |
| Ľ  | 2                    |             |                     |                        | NotUs   |               |       |                       | ot U: |                        |                | NotUs             |               |          | Not l             |            |       | DISAB              |       |                       | /2%                        | Not Used    |           |              | t Used              | Not            |
|    | 2                    |             |                     |                        | Not Us  |               |       |                       | ot U: |                        |                | Not Us            |               | _        | Not I             |            |       | Not Us             |       |                       | Used                       | Not Used    |           |              | t Used              | Not            |
|    | 4                    |             |                     |                        | Not Us  |               |       |                       | ot U: |                        |                | NotUs             |               |          | Not I             |            |       | Not Us             |       |                       | Used                       | Not Used    |           |              | t Used              | Not            |
|    | 5                    |             |                     |                        | Not Us  |               |       |                       | ot U: |                        |                | NotUs             |               |          | Not I             |            |       | Not Us             |       |                       | Used                       | Not Used    |           |              | t Used              | Not            |
|    | 6                    |             |                     |                        | Not Us  |               |       |                       | ot U: |                        |                | Not Us            |               |          | Not I             |            |       | NotUs              |       |                       | Used                       | Not Used    |           |              | t Used              | Not            |
|    | 7                    |             |                     |                        | NotUs   |               |       |                       | ot U: |                        |                | NotUs             |               |          | Not I             |            |       | Not Us             |       |                       | Used                       | Not Used    |           |              | t Used              | Not            |
|    | 8                    |             |                     |                        | Not Us  |               |       |                       | ot U: |                        |                | NotUs             |               |          | Not I             |            |       | Not Us             |       |                       | Used                       | Not Used    |           |              | tUsed               | Not            |
| •  | 0                    | =           | Martin.             | - J                    | KILCII. | J             |       | - KI                  |       |                        |                | Maclin            |               |          | K1_1              | 1          |       | KL-LII-            |       | Al -s                 | 11                         | Next I and  |           | KI-          |                     | N.L.A.         |
| ┝╸ |                      |             |                     |                        |         |               |       |                       |       |                        |                | la la             | formativ      | on th    | atrola            | ates to cu | onda  | nsors on           | the . | oirouit               |                            |             |           |              |                     |                |
|    | Circ<br>(res<br>butt |             | # of<br>Cond<br>ROs | Starting<br>Condenso   | or RO   | Cor<br>AO     |       | nsor F                | an    |                        | arting<br>nden | ser Fault         | Cond<br>Fault | I F      | iond<br>an<br>ank | Conde      | enser | Coil               | Con   | idenser Coil<br>np #2 | Tandem<br>EXV<br>Circuit # | EXV Control |           | Suct<br>Grou |                     | np<br>ne/ID    |
|    | 1                    |             | 5                   | CndFan 1               | -1      | Not           | : Use | ed                    |       | No                     | t Use          | d                 | 0             | 1        |                   | Not U      | sed   |                    | Not   | Used                  | 1                          | Suct Spht   |           |              | 1                   |                |
| 18 | 2                    |             |                     | CndFan 2               |         | Not           | : Use | ed                    |       | No                     | t Use          | d                 | 0             | 2        |                   | Not U      | sed   |                    | Not   | Used                  | 2                          | Ref LvI     |           | Ł            | 2                   |                |

## 99

## MCS-MAGNUM EXV SUCTION/DISCHARGE SUPERHEAT LOGIC

#### MCS-MAGNUM EXV SetpoInts

**#9 SUPERHT TARG =** Target temperature setting for Superheat ('Time (sec)' is the seconds between samples used for calculating the Superheat Rate of Change).

**#10 SPRHT ZONE+- =** This value is added to and subtracted from setpoint #9 to calculate the upper and lower zones of the superheat control zone.

**#11 EXV LOAD ADJ =** The opening adjustment that will be made to the EXV when the compressor load solenoid is pulsed, or the closing adjustment when the compressor unload solenoid is pulsed.

**#12 EXV FINE ADJ =** Small Adjustment for the Valve (See Chart).

**#13 EXV COURSE =** Large Adjustment for the Valve (See Chart).

**#14 EXV LOAD DIV =** As the compressor amp draw % changes, this divides the EXV % change. It is calculated as follows: (Last FLA % - Current FLA %)/Setpoint #14

**#15 EXV MIN% =** Minimum Valve % allowed.

**#16 EXV MAX% =** Maximum Valve % allowed.

**#17 LO SUPERHEAT =** Temperature setting for Low Superheat.

**#18 LOSUCTPSIDLY =** Delay (sec) when in Lo Suct PSI Opening

**#19 EXV DELAY =** Maximum Delay (sec) between valve adjustments.

**#20 EXV STRT TME =** Delay (sec) to remain in EXV IN STARTUP when the compressor first starts.

**#65 EXV ZONE1 DB** = When set up as a setpoint or target type, the value field is added to and subtracted from setpoint #9 "Superheat Target" ± setpoint #10 "Superheat zone" to develop the upper and lower limits for "EXV is Opening" and "EXV is Closing" zones in zone 1. When set up as a target, the night setback field is used as an offset that is added to setpoint #9 (Superheat Target) to calculate the bottom value for the limit of where Low PSI opening is allow to operate. **#66 EXV ZONE2 DB** = The offset added to and subtracted from setpoint #9 "Superheat Target" ± (setpoint #10 "Superheat zone" × 2 OR setpoint #65 "EXV ZONE1 DB" if active) to develop the upper and lower limit for "EXV Opening 2x" and "EXV Closing 2x" zones in zone 2.

**#67 EXV ROC ZN1 =** The superheat's Rate Of Change (ROC) holding limit for the "EXV Opening" and "EXV Closing" zone. This setpoint value is entered as a positive number and for "EXV is Opening" zone multiplied by -1. Time in seconds = Minimum time to hold when ouside the zone and the ROC is moving in the right direction. The EXV will be forced into a hold state for this minimum time.

**#69 EXV ROC ZN2 =** The superheat's Rate Of Change (ROC) holding limit for the "EXV Opening 2x" and "EXV Closing 2x" zone. The setpoint value is entered as a positive number and for "EXV Opening 2x" zone multiplied by -1. Time in seconds = Minimum time to hold when ouside the zone and the ROC is moving in the right direction. The EXV will be forced into a hold state for this minimum time.

**#70 EXV ROC ZN3 =** The superheat's Rate Of Change (ROC) holding limit for the "EXV Opening 4x" and "EXV Closing 4x" zone. The setpoint value is entered as a positive number and for "EXV Opening 4x" zone multiplied by -1. Time in seconds = Minimum time to hold when ouside the zone and the ROC is moving in the right direction. The EXV will be forced into a hold state for this minimum time.

**#71 EXV ROC HD2x** = The superheat ROC Opening 2x/Closing 2x limit for the "EXV is HOLDING" zone. The setpoint value is entered as a positive number and for "EXV Opening 2x" tested multiplied by -1. Time in seconds = Minimum time to hold when ouside the zone and the ROC is moving in the right direction. The EXV will be forced into a hold state for this minimum time. **#72 EXV ROC HD1x** = The superheat ROC

Opening/Closing limit for the "EXV is HOLDING" zone. The setpoint value is entered as a positive number and for "EXV Opening" zone multiplied by -1.

**#77 LOW SUCTION =** Low suction PSI safety (See chart for calculation).

**#78 LO SUCT UNLD =** Time value is used to delay the comp from going into safety unloading state to allow EXV time to open.

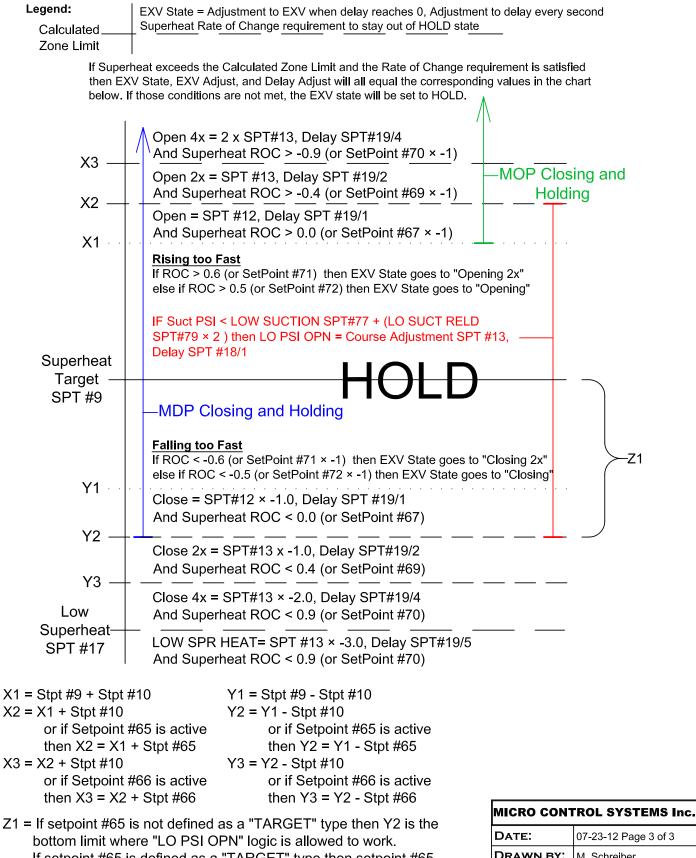
**#79 LO SUCT RELD =** Low suction reloading (See chart for calculation).

| MICRO CONT        | ROL SYSTEMS Inc.                                                |
|-------------------|-----------------------------------------------------------------|
| DATE:             | 07-23-12 Page 1 of 3                                            |
| DRAWN BY:         | M. Schreiber                                                    |
| <b>REVISION</b> : | G                                                               |
| DWG NAME:         | MCS-MAGNUM EXV SUCTION-DISCHARGE<br>SUPERHEAT LOGIC - REV G.DWG |

# MCS-MAGNUM EXV SUCTION/DISCHARGE SUPERHEAT LOGIC

#### MCS-MAGNUM EXV Setpoints

**#199 MOP TARG PSI =** The Maximum Operation Suction pressure (MOP). If the suction pressure is greater than this value plus setpoint #200, then the EXV is forced to close. The EXV state is set to "EXV IS MOP CLS".


**#200 MOP PSI ZONE =** If the suction pressure is greater than setpoint #199 minus this value, then the EXV is force into "EXV IS MOP HLD" and the EXV will not be allowed to open.

**#201 MOP ADJ % TME =** This setpoint's value is used as the amount to adjust the EXV closed when in "EXV IS MOP CLS". This setpoint's "Time in sec" column is used as the delay between EXV adjustments when in the "EXV IS MOP CLS" state.

**#205 EXV MDP =** The Minimum Oil Differential pressure limit. When oil differential is below this value the EXV state will go to "EXV is MDP CLS". The setpoint's 'Time (sec)' column is an offset pressure value to allow the EXV back to normal control (Value is entered with one assumed decimal place. Ex: value of 50 = 5.0 psi offset). The 'Sec. To Ignore Safety' column is the time in minutes for the MDP logic to run after the compressor starts; if zero then MDP logic will run all the time. The 'Lockout Delay Hrs.' column is the adjust amount the EXV will be closed each time the delay reaches zero (Value is entered with one assumed decimal place. Ex: value of 20 = 2.0%).

**EXV STARTING %** is stored in RO Grid in Compressor row.

| MICRO CONT        | ROL SYSTEMS Inc.                                                |
|-------------------|-----------------------------------------------------------------|
| DATE:             | 07-23-12 Page 2 of 3                                            |
| DRAWN BY:         | M. Schreiber                                                    |
| <b>REVISION</b> : | G                                                               |
| DWG NAME:         | MCS-MAGNUM EXV SUCTION-DISCHARGE<br>SUPERHEAT LOGIC - REV G DWG |



If setpoint #65 is defined as a "TARGET" type then setpoint #65 night setback field is added to setpoint #9 valve to calculate the bottom limit where "LO PSI OPN" logic is allowed to work.

| DATE:             | 07-23-12 Page 3 of 3             |
|-------------------|----------------------------------|
| DRAWN BY:         | M. Schreiber                     |
| <b>REVISION</b> : | G                                |
| DWG NAME:         | MCS-MAGNUM EXV SUCTION-DISCHARGE |
|                   | SUPERHEAT LOGIC - REV G.DWG      |

## 27.1.1 EXV Control States

The EXV Control States show the status of the compressor's expansion valve. If the compressor has an EXV it will be displayed under the Status entry.

|                                                      | Capacity<br>Control State | Time      | Wanted/<br>Actual | Step Delay | Wanted<br>% |       | e of<br>Inge | Control     |       | Mode     |  |  |
|------------------------------------------------------|---------------------------|-----------|-------------------|------------|-------------|-------|--------------|-------------|-------|----------|--|--|
| UNIT                                                 | IS HOLDING                | 00:00:16  | 1/1               | 60         | 100.0       | 0.    | .0           | ChilWtrOut= | 55.0F | COOLING  |  |  |
|                                                      | State                     | Time      | Oil Diff          | FLA %      | Ste         | ps    |              | Le:         | ad?   |          |  |  |
| 1)FA9                                                | ST UNLOADING              | 00:00:14  | 140.0P            | 97         | 1           | L     |              | Υe          | 25    |          |  |  |
| 2)SA                                                 | FETY TRIPPED              | 00:01:15  | 156.0P            | 116        | (           | )     |              |             |       |          |  |  |
|                                                      | Suction                   | Saturated | Suction           | D          | isc         | Satur | ated         | Disc        |       | DefTure  |  |  |
|                                                      | Temp                      | Suction   | Superhea          | t Te       | mp          | Disch | arge         | Superhea    | ıt    | RefType  |  |  |
| 1)                                                   | 45.0                      | 33.0      | 12.0              | 15         | 2.0         | 100   | .6           | 51.4        |       | R22      |  |  |
| 2)                                                   | 50.0                      | 38.1      | 11.9              | 18         | 5.0         | 102   | .9           | 82.1        |       | R22      |  |  |
|                                                      | Valve State               | Time      | Valve 9           | %          | SuperHe     | at    | Supe         | erHeat ROC  | AE    | )J Delay |  |  |
| 1)                                                   | EXV PRE-PMPDWN            | 00:00:16  | 15.0              |            | 12.0        |       |              | 0.0         |       | 0        |  |  |
| 2)                                                   | ) EXV IS CLOSED           | 00:01:16  | 0.0               |            | 11.9        |       |              | 0.0         |       | 0        |  |  |
|                                                      |                           |           |                   |            |             |       |              |             |       |          |  |  |
|                                                      |                           |           |                   |            |             |       |              |             |       |          |  |  |
| Status Alarms SetPoints Reset/Clear Schedule Service |                           |           |                   |            |             |       |              |             |       |          |  |  |

To view the EXV status through the Keypad LCD, select Status from the Main Menu and then page to the EXV screen.

#### **EXV States:**

| LOCKED OUT        | The compressor is in a Lockout state.                                                                                                                                                                                                                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS CLOSED         | The associated compressor is OFF and the valve is closed                                                                                                                                                                                                                                                                      |
| PRE-PMPDWN        | The valve has been in a closed state and the system is now requiring the valve action.                                                                                                                                                                                                                                        |
| IN STARTUP        | At startup the valve will remain in this state for the time in Setpoint #20. At that time the state will be changed to holding, at this point the valve control logic will position the valve.                                                                                                                                |
| AT 100%           | This state will be entered when the valve opening reaches 100%.                                                                                                                                                                                                                                                               |
| IS HOLDING        | Refer to EXV Logic Chart, superheat is in control zone and ROC is acceptable.                                                                                                                                                                                                                                                 |
| IS OPENING        | Refer to EXV Logic Chart, superheat is in control zone but rising too fast, ROC less than 1.0.                                                                                                                                                                                                                                |
| IS CLOSING        | Refer to EXV Logic Chart, superheat is in the control zone and the rate of change is acceptable, ROC greater than -0.5.                                                                                                                                                                                                       |
| LOW SPRHT         | Refer to EXV Logic Chart, force a course valve adjustment.                                                                                                                                                                                                                                                                    |
| <b>OPENING 4x</b> | Refer to EXV Logic Chart, superheat is above control zone.                                                                                                                                                                                                                                                                    |
| <b>OPENING 2x</b> | Refer to EXV Logic Chart, superheat is in control zone but rising too fast, the ROC is greater than 1.0.                                                                                                                                                                                                                      |
| LO PSI OPN        | Refer to EXV Logic Chart, state indicates that a low suction pressure condition exists. The suction pressure is less than Setpoint #77 "LOW SUCTION" plus twice the value of Setpoint #79 "LOW SUCT RELOAD" and the superheat is greater than Setpoint #9 "SUPERHT TRGT" plus twice the value of Setpoint #10 "SPRHT ZONE+-". |
| CLOSING 2x        | Refer to EXV Logic Chart, superheat is in the control zone and the rate of change is acceptable, the ROC is less than -0.5 and greater than -1.0.                                                                                                                                                                             |
| CLOSING 4x        | Refer to EXV Logic Chart, superheat is in control zone but falling too fast, ROC less than -1.0.                                                                                                                                                                                                                              |
| HI LVL CLS        | This state indicates that a high refrigerant level. This state is entered if Setpoint #109 "HiRefLevel" is active and the super-<br>heat is greater than the value of this Setpoint.                                                                                                                                          |
| IS MOP CLS        | Refer to EXV Logic Chart. Maximum operating pressure option is active and it is forcing the EXV to close. In this state the EXV valve's opening will be reduced.                                                                                                                                                              |
| IS MOP HLD        | Refer to EXV Logic Chart. Maximum operating pressure option is active and it is forcing the EXV to hold.                                                                                                                                                                                                                      |
|                   |                                                                                                                                                                                                                                                                                                                               |

## 27.1.2 EXV Maximum Operating Pressure

Setpoint #199 "MOP TARG PSI" must be active if the suction pressure is to be checked for maximum operating pressure. If the suction pressure is above the MOP control zone, then the EXV state will be changed to EXV IS MOP CLS. The EXV valve opening will be closed by the value in Setpoint #201 with each adjustment. The 'Time(sec)' field of Setpoint #201 will be the delay between making adjustments to the EXV valves. The EXV will remain in this state until the suction pressure drops below the top of the MOP control zone. At this point the state will be changed to EXV IS MOP HOLD.

In the EXV IS MOP HOLD state the EXV valve's opening cannot be increased but it can be closed. The EXV will remain in this state until the suction pressure drops below the MOP control zone. At that time the EXV control state will change to EXV IS HOLDING and normal EXV control will resume.

(Refer to section 13 Setpoints #199, #200, and #201)

### 27.1.3 Tandem EXV Setup

The Magnum supports tandem EXV control. However a separate compressor must be set up to support this function. Therefore, the maximum compressors that can be supported with tandem EXV are ten. The tandem EXV compressors must follow the active compressors in the system.

## 27.1.4 Example: One Compressor with One Step and Tandem EXV's

In the General Information panel of the MAGNUM screen enter the number of compressors and steps:



In the Circuit Base screen the base compressor information will be entered. The active compressors information is to be completed as normal and the tandem EXV information will be provided as needed. Note the Type of LLS cell must be 'EXV&LLS' for the active compressor and 'EXV only' for the tandem compressor.

|  |   |     |                     |                              |              |     |                        |                  |             | Informatio | on | that rel | ate | s to compre        | sso | ors on the circ     | cuit           |      |            |     |
|--|---|-----|---------------------|------------------------------|--------------|-----|------------------------|------------------|-------------|------------|----|----------|-----|--------------------|-----|---------------------|----------------|------|------------|-----|
|  |   | set | # of<br>Comp<br>ROs | Starting<br>Compressor<br>RO | Part<br>Wind | ing | Start<br>Unioa<br>Bypa | Fast<br>Unloader | Type of LLS | 2nd LLS    | S  | 3rd LL   |     | 3rd LLS<br>Control |     | Unloading<br>Stages | Loader<br>Type | HGB  | HG<br>Rehe | eat |
|  | 1 |     | 2                   | COMP                         | No           |     | No                     | <br>No           | EXV&LLS     | No -       |    | No       |     | Slide %            |     | 0                   | Unloader       | None | No         |     |
|  | 2 |     | 0                   | Not Used                     | No           |     | No                     | <br>No           | EXV only    | No .       |    | No       |     | Slide %            |     | 0                   | Unloader       | None | No         |     |

In the next section the EXV Output cell must be set up for both the EXV's

|   |                             |  |                   |            |                                          | Selec                     | t Output and Senso        | r Inputs per circuit |            |
|---|-----------------------------|--|-------------------|------------|------------------------------------------|---------------------------|---------------------------|----------------------|------------|
|   | Circuit<br>(reset<br>button |  | Alarm Relay       | Comp Proof | Compr Speed or<br>Modulate Hot<br>Gas AO | Compressor<br>speed fault | Slide Closed<br>Indicator | Pump Down            | EXV Output |
| ► | 1                           |  | Not Used Not Used |            | Not Used                                 | Not Used                  | Not Used                  | Not Used             | EXV A      |
|   | 2 N                         |  | Not Used Not Used |            | Not Used                                 | Not Used                  | Not Used                  | Not Used             | EXV B      |

In the next section the active compressor is associated with its tandem EXV in the 'Tandem EXV Circuit #' cell. Circuit #1 ties to circuit #2, this is the tandem EXV. The Suction Group cells are 1 and 2 respectively.

|          |   |                                           |          |                     |                             | Informat            | ion that r          | elates to condensor       | s on the circuit          |                            |             |                  |
|----------|---|-------------------------------------------|----------|---------------------|-----------------------------|---------------------|---------------------|---------------------------|---------------------------|----------------------------|-------------|------------------|
| <b>1</b> |   | # of Starting<br>Cond Condensor RO<br>ROs |          | Condensor Fan<br>AO | Starting<br>Condenser Fault | #<br>Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit # | EXV Control | Suction<br>Group |
| · 1      | [ | <br>0                                     | Not Used | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 2                          | Superht     | 1                |
| 2        |   | <br>0                                     | Not Used | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 2                          | Superht     | 2                |

In the Compressor SI screen the active compressors information is to be completed as normal, while only the Suction Pressure and Suction Temperature must be entered for the tandem EXV. The different suction temperature provides separate control for the tandem EXV.

## 27.1.4.1. Example: Two Compressors with Four Steps and Tandem EXV's

In the General Information panel of the MAGNUM screen enter the number of compressors and steps:



|                                |  |   |                              |               |     | Information that relates to compressors on the circuit |                |              |         |  |         | cuit |                        |  |                     |                |
|--------------------------------|--|---|------------------------------|---------------|-----|--------------------------------------------------------|----------------|--------------|---------|--|---------|------|------------------------|--|---------------------|----------------|
| Circuit<br># (reset<br>button) |  |   | Starting<br>Compressor<br>RO | Part<br>Windi | ing | Start<br>Unlo<br>Bypa                                  | Fast<br>Unload | Type of LLS  | 2nd LLS |  | 3rd LLS |      | LLS 3rd LLS<br>Control |  | Unloading<br>Stages | Loader<br>Type |
| 1                              |  | 3 | COMP 1                       | No            |     | No                                                     | <br>No         | <br>EXV&LLS  | No      |  | No      |      | Slide %                |  | 1                   | Unloader       |
| 2                              |  | 3 | COMP 2                       | No            |     | No                                                     | <br>No         | <br>EXV&LLS  | No      |  | No      |      | Slide %                |  | 1                   | Unloader       |
| 3                              |  | 0 | Not Used                     | No            |     | No                                                     | <br>No         | <br>EXV only | No      |  | No      |      | Slide %                |  | 0                   | Unloader       |
| 4                              |  | 0 | Not Used                     | No            |     | No                                                     | <br>No         | <br>EXV only | No      |  | No      |      | Slide %                |  | 0                   | Unloader       |

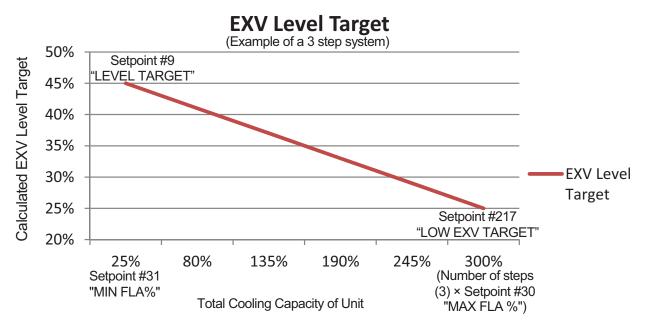
In the next section the EXV Output cell must be set up for all the EXV's

| Select Output and Sensor Inputs per circuit |      |             |            |                                          |                           |                           |           |            |  |  |  |
|---------------------------------------------|------|-------------|------------|------------------------------------------|---------------------------|---------------------------|-----------|------------|--|--|--|
| Circuit #<br>(reset<br>button)              |      | Alarm Relay | Comp Proof | Compr Speed or<br>Modulate Hot<br>Gas AO | Compressor<br>speed fault | Slide Closed<br>Indicator | Pump Down | EXV Output |  |  |  |
| 1                                           |      | Not Used    | Not Used   | Not Used                                 | Not Used                  | Not Used                  | DISABLE1  | EXV1A%     |  |  |  |
| 2                                           |      | Not Used    | Not Used   | Not Used                                 | Not Used                  | Not Used                  | DISABLE2  | EXV2A%     |  |  |  |
| 3                                           |      | Not Used    | Not Used   | Not Used                                 | Not Used                  | Not Used                  | Not Used  | EXV1B%     |  |  |  |
| 4                                           | •••• | Not Used    | Not Used   | Not Used                                 | Not Used                  | Not Used                  | Not Used  | EXV2B%     |  |  |  |

In the next section the active compressor is associated with its tandem EXV in the 'Tandem EXV Circuit #' cell. Circuit #1 ties to circuit #3, and circuit #2 ties to circuit #4 (circuits #3 and #4 are the Tandem EXV's). The Suction Group cells are 1, 2, 3, and 4 respectively.

In the Compressor SI screen the active compressors information is to be completed as normal, while only the Suction Pressure and Suction Temperature must be entered for the tandem EXV's. The different suction temperature provides separate control for the tandem EXV's.

|   | Information that relates to condensors on the circuit |     |                     |                          |                     |                             |                     |                     |                           |                           |                            |             |                  |
|---|-------------------------------------------------------|-----|---------------------|--------------------------|---------------------|-----------------------------|---------------------|---------------------|---------------------------|---------------------------|----------------------------|-------------|------------------|
|   | Circui<br>(reset<br>butto                             | t i | # of<br>Cond<br>ROs | Starting<br>Condensor RO | Condensor Fan<br>AO | Starting<br>Condenser Fault | #<br>Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit # | EXV Control | Suction<br>Group |
| ► | 1                                                     |     | 2                   | FAN 1-1                  | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 3                          | Superht     | 1                |
|   | 2                                                     |     | 2                   | FAN 2-1                  | Not Used            | Not Used                    | 0                   | 2                   | Not Used                  | Not Used                  | 4                          | Superht     | 2                |
|   | 3                                                     |     | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 3                   | Not Used                  | Not Used                  | 3                          | Superht     | 3                |
|   | 4                                                     |     | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 4                   | Not Used                  | Not Used                  | 4                          | Superht     | 4                |


| Se | Select Suction, Discharge, Dil and Motor Sensors for Circuits |                           |      |                  |                       |                        |                          |              |          |            |            |
|----|---------------------------------------------------------------|---------------------------|------|------------------|-----------------------|------------------------|--------------------------|--------------|----------|------------|------------|
|    | (                                                             | Circui<br>reset<br>buttor |      | Suction Pressure | Discharge<br>Pressure | Suction<br>Temperature | Discharge<br>Temperature | Oil Pressure | Oil Temp | Motor Amps | Motor Temp |
| ▶  | 1                                                             |                           | •••• | SUCT PSI         | DISC PSI              | EVP TmpA               | DISC TMP                 | OIL PSI      | Not Used | AMPS       | MTR FLT    |
|    | 2                                                             | 2                         | •••• | SUCT PSI         | Not Used              | EVP TmpB               | Not Used                 | Not Used     | Not Used | Not Used   | Not Used   |

## 27.1.5 'Evaporator or Condenser Refrigerant Level Control

There is an alternate method to control the EXV based on Ref Level.

## 27.1.5.1. Minimum Refrigerant Level target (HVAC ONLY)

If active and the EXV is controlled by Refrigerant Level, then a new variable level target logic will be activated. As the unit capacity increases, the refrigerant level target will change according to a linear calculation between Setpoint #9 "LEVEL TARGET" (the maximum target level) and Setpoint #217 "LOW EXV TARGET" (the minimum target level). This relationship is explained in the following graph: In the Compressor SI screen the active compressors information is to be completed as normal, while only the Suction Pressure and Suction Temperature must be entered for the tandem EXV's. The different suction temperature provides separate control for the tandem EXV's.



## 27.1.5.2. Evaporator Level Control

This option will control the EXV based upon the Refig Level sensor which is selected in Circuit SI screen, column Refrig Level. Control will be as indicated in the MCS-MAGNUM EXV SUCTION/ DISCHARGE SUPERHEAT LOGIC sections except the EXV states will be the opposite of the SUC-TION/DISCHARGE control. When the refrigerant level is above the associated control point the EXV valve will be closed and when it is below the associated control point the EXV valve will be opened.

## 27.1.5.3. Condenser Level Control

This option will control the EXV based upon the Refig Level sensor which is selected in Circuit SI screen column Refrig Level. This sensor will indicate the refrigerant level in the condenser. Control is the opposite of the Refrigerant Level Control. When the condenser level is above the associated control point the EXV valve will be opened and when it below the associated control point the EXV valve will be opened and when it below the associated control point the EXV valve will be closed.

## 27.1.6 EXV control methods for Step Loading Compressors

Percentage per Step: (Requires Magnum Software HVAC 8.03L and MCS-Config 8.00W or higher)

To control the EXV based on a percentage per step for fixed step compressors, insert the relative load and unload adjustment percentages in the respective fields in the Relay Output screen. The load and unload adjustments will increase or decrease respectively based on a percentage of the current EXV position (not a fixed value)

Here is an example of a Hanbell Screw compressor configured to load by fixed steps:

| Relay Output Information Screen |  |            |                               |             |                                       |    |  |  |  |  |  |
|---------------------------------|--|------------|-------------------------------|-------------|---------------------------------------|----|--|--|--|--|--|
| Number                          |  | Name       | EXV Start Type<br>(When Lead) |             | EXV Load EXV Uni<br>Adjust % Adjust % |    |  |  |  |  |  |
| M-1                             |  | COMP 1     | 25                            | Step w\ EXV | 50                                    | 60 |  |  |  |  |  |
| M-2                             |  | LLS 1      |                               | Standard    |                                       |    |  |  |  |  |  |
| M-3                             |  | HotGasByps | 0                             | Step w\ EXV | 50                                    | 60 |  |  |  |  |  |
| M-4                             |  | UNLOAD 50% | 0                             | Step w\ EXV | 30                                    | 40 |  |  |  |  |  |
| M-5                             |  | UNLOAD 75% | 0                             | Step w\ EXV | 20                                    | 30 |  |  |  |  |  |

These columns are used for the compressor when there are multiple compressors on a single suction circuit, however, values must be in these fields for this logic to be in effect. The logic will work as follows: When the compressor starts the EXV will go to the value in the 'EXV Start (when lead)' column, in this example it is 25%. The EXV will then modulate normally according to the controlling superheat or refrigerant level, until the unit is ready to load another step of capacity. Assume the EXV has stayed at 35% when the second step of capacity is ready to engage (turning off the Hot Gas Bypass). The EXV adjustment will be 50% (the amount in the 'EXV Load Adjust' column of the current EXV position

'EXV Load Adjust' column (50%) × current EXV position (35%) = EXV adjustment (17.5%)

50% × 35% = 17.5%

Current EXV position (35%) + EXV adjustment (17.5%) = New EXV position (42.5%)

35% +17.5% = 42.5%

Therefore the final EXV valve position would be 42.5%

This same calculation will be repeated every time a new stage of capacity is turned on. Conversely, when the unit is unloading, the EXV adjustment will be subtracted from the current EXV position for every step that turns off. Assume the EXV is at 40% and the compressor is at 100% and is ready to unload a step (turning on Unload 75% solenoid).

'EXV Unld Adjust' column (30%)× current EXV position (40%)= EXV adjustment (12%)

30% × 40% = 12%

Current EXV position (40%)–EXV adjustment (12%) = New EXV position (28%)

40%-12% = 28%

Therefore the final EXV valve position would be 28%

The values given in the example are only start points. You will need to adjust the values for your system. The idea is to jump the EXV position so that the superheat would still be above the target slightly, and then the EXV control logic would then adjust the value to achieve the target superheat. We do not want to open the EXV valve too much when loading or close the valve too much when unloading so we do not cause low superheat or liquid flooding to the compressor.

## Chapter - 28. EXV Control SSH, SSH2

MCS has released two new superheat control systems in addition to its existing EXV Superheat Control Systems.

## 28.1. Fast Suction Superheat (Fast SSH)

Released with firmware 17.26-B.hex with the following objectives:

- Reduce the number of set points required. (SP 65 through 72 were eliminated)
- Provide only one control zone.
- Anytime the superheat moves outside this zone to recovery within two minutes or less.
- Provide Fast Suction Superheat control for Subcooler's with standard set points. (SP 65 through 72 were used. (SP 253 through 255 were eliminated)

Provide option to dynamically calculate the EXV starting position

## 28.2. Fast Suction Superheat 2 (Fast SSH2)

Released with firmware 17.37D1.hex with the following objectives:

- Provide MCS Default set points for all EXV controls types.
- Improve on self learning EXV Valve starting position.
- Provide color coded identification for Fast SSH, Fast SSH2 & Subcooler options in MCS-Config.
- Add an extended SH ROC to allow finer decisions and reduce valve movement.
- Add explicit states for Fast SSH and Fast SSH2.

## 28.3. Selecting Fast SSH or Fast SSH2 in MCS-Config

In Fast SSH & Fast SSH2 only Set Points 9 through 20 are used to control the EXV valve. If you select Fast SSH or Fast SSH2 as your superheat EXV control and you have a subcooler (an economizer injecting refrigerant into the compression chamber) you will get Fast SSH control on the EXV for the subcooler. The Fast SSH set points for the subcooler are 65 through 72.

Select Type of Control in Relay Output Information Screen. In the RO screen, from the drop down window in 'Type' you select either 'Step w \ EXV' or 'Screw w \ EXV'

|   | Relay Output Information Screen |   |            |                |               |               |                   |                   |                             |                          |                             |  |  |
|---|---------------------------------|---|------------|----------------|---------------|---------------|-------------------|-------------------|-----------------------------|--------------------------|-----------------------------|--|--|
|   | Point<br>Numbe                  |   | Name       | Slide<br>Mult. | Slide<br>Div. | Slide<br>Off. | Design<br>Suc.PSI | Design<br>Dis.PSI | Nominal<br>Tonnage(of Step) | EXV Start<br>(When Lead) | Туре                        |  |  |
| ▶ | M-1                             |   | COMP       | —              |               |               |                   |                   | 0                           | 38                       | Step w\ EXV 💌               |  |  |
|   | M-2 .                           |   | REV VALVE  |                |               |               |                   |                   |                             |                          | Step w\ EXV                 |  |  |
|   | M-3 .                           |   | SUPPLY FAN |                |               |               |                   |                   |                             |                          | Screw w\ EXV                |  |  |
|   | M-4 .                           |   | SPAREM-4   |                |               |               |                   |                   |                             |                          | Screw NO EXV<br>Pulse Relav |  |  |
|   | M-5 -                           |   | INV RUN    |                |               |               |                   |                   |                             |                          | Alm-Emerg Stop              |  |  |
|   | M-6 .                           |   | INV RESET  |                |               |               |                   |                   |                             |                          | Alm-Freeze Fault            |  |  |
|   | M-7.                            | ] | GARAGE LT  | —              |               |               |                   |                   |                             |                          | Alm-Hi Sump Temp 🛛 🗡        |  |  |

# 28.4. Circuit Base

In the Circuit Base screen you need to select the Analog Output for the EXV.

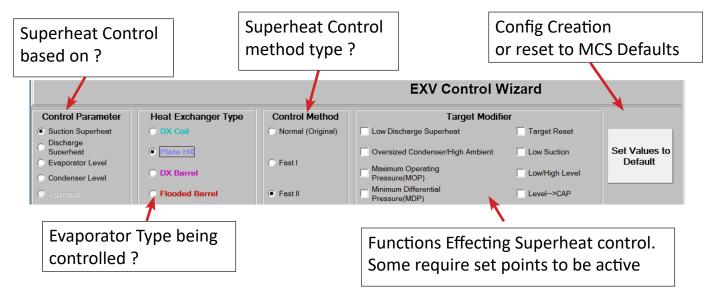
|   |    |                              |             |            |                                                |                           |                           | Sel       | ect Output and           | Sensor Inn       | uts | per circuit           |
|---|----|------------------------------|-------------|------------|------------------------------------------------|---------------------------|---------------------------|-----------|--------------------------|------------------|-----|-----------------------|
|   | (r | ircuit<br>#<br>eset<br>utton | Alarm Relay | Comp Proof | Compr<br>Speed(%) or<br>Modulate Hot<br>Gas AN | Compressor<br>Speed Fault | Slide Closed<br>Indicator | Pump Down | Evaporator<br>EXV Output | Flo <del>w</del> |     | Circuit<br>Pump/Valve |
| ► | 1  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | DISABLE 1 | EXV1 % 🔻                 | Not Used         |     | Not Used              |
|   | 2  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | DISABLE 2 | RO                       |                  |     | Not Used              |
|   | 3  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | EXV1 %                   |                  |     | Not Used              |
|   | 4  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | EXV2 %                   |                  |     | Not Used              |
|   | 5  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | CHW PMP1%                |                  |     | Not Used              |
|   | 6  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | CHW PMP2%                |                  |     | Not Used              |
|   | 7  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | CND VFD1%                |                  |     | Not Used              |
|   | 8  |                              | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used  | CND VFD2%                |                  |     | Not Used              |
| 4 |    |                              | N-1         | N          | N                                              | N                         | N                         | N         | SPARE1-3                 |                  |     | Mar II.a.d            |

Next in the Circuit Base screen you need to select 'Fast SSH' or 'Fast SSH2' from the Evaporator EXV Control section drop down menu.

| Circui<br>(rese<br>buttor | et | # of<br>Cond<br>ROs | Starting<br>Condenser RO | Condenser Fan<br>AO | Starting<br>Condenser Fault | #<br>Cond<br>Faults | Cond<br>Fan<br>Bank | Condenser Coil<br>Temp #1 | Condenser Coil<br>Temp #2 | Tandem<br>EXV<br>Circuit # | Evaporator E×<br>Control | ∾ |
|---------------------------|----|---------------------|--------------------------|---------------------|-----------------------------|---------------------|---------------------|---------------------------|---------------------------|----------------------------|--------------------------|---|
| 1                         |    | 1                   | COND FAN                 | COND CTRL           | Not Used                    | 0                   | 1                   | CONDIN T                  | Not Used                  | 1                          | Fast SSH2                | - |
| 2                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 2                   | Not Used                  | Not Used                  | 2                          | Cond Lvl                 | ~ |
| 3                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 3                   | Not Used                  | Not Used                  | 3                          | Fast SSH                 |   |
| 4                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 4                   | Not Used                  | Not Used                  | 4                          | Fast SSH2<br>Evap Appr   |   |
| 5                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 5                   | Not Used                  | Not Used                  |                            | Fast Evap App            |   |
| 6                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 1                   | Not Used                  | Not Used                  | 1                          | Fast EvpLvI              |   |
| 7                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 2                   | Not Used                  | Not Used                  | 2                          | Fast DSH                 | ~ |
| 8                         |    | 0                   | Not Used                 | Not Used            | Not Used                    | 0                   | 3                   | Not Used                  | Not Used                  | 3                          | Fast SSH2                |   |

With the release of Fast SSH2 MCS has released a new MCS-Config to support the new functions. The new MCS-Config provides a new tab, 'EXV Control', where you define your system. This then allows MCS-Config to provide MCS Default Set Point Values for you. The figure below shows the Current 'Circuit Base' tab and the new 'EXV Control' tab.

| File Edit Window Help |       |     |         |              |            |           |      |          |            |             |              |
|-----------------------|-------|-----|---------|--------------|------------|-----------|------|----------|------------|-------------|--------------|
| 🕞 🚰 🥌 System Setup R  | s Sis | AOs | MAG RTU | Circuit Base | Circuit SI | Setpoints | Auth | Schedule | BMS Points | EXV Control | Lookup Table |


If you enter data in the EXV portion of the Circuit Base tab or in the EXV Control tab it is carried through to the other tab.

# **28.4.1** Selecting the 'EXV Control' tab you are prompted with the following:

| ļ           | <b>2</b> | System Se       | tup RC | )s Sl    | s AC                                                                                                           | Ds              | MAG           | HVAC                         | Circuit B                 | ase Circu                   | iit SI Setpoi              | ints  | Auth Sch                                    | edule BMS                       |                     | Looku    | ıp Table                   |             |                                  |
|-------------|----------|-----------------|--------|----------|----------------------------------------------------------------------------------------------------------------|-----------------|---------------|------------------------------|---------------------------|-----------------------------|----------------------------|-------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|-------------|----------------------------------|
|             |          |                 |        |          |                                                                                                                |                 |               |                              |                           |                             | EX                         | V     | Contro                                      | l Wizar                         | d                   |          |                            |             |                                  |
| Ĩ           | Con      | trol Parameter  | He     | at Exch  | anger                                                                                                          | Туре            |               | Control M                    | ethod                     |                             |                            |       | Target Mo                                   | difier                          |                     |          |                            |             |                                  |
|             | Su       | ction Superheat |        | OX Coil  | <b>3</b>                                                                                                       |                 |               | Normal (O                    | riginal)                  | L I OW                      | Discharge S                | Supe  |                                             |                                 | arget Reset         |          |                            |             |                                  |
| Selection   |          | charge          |        |          |                                                                                                                |                 |               |                              |                           |                             |                            |       |                                             |                                 |                     |          |                            |             |                                  |
| Option 🗲    |          | perheat         | •      | Plate HX |                                                                                                                |                 |               |                              |                           | C Ove                       | rsized Conde               | ense  | er/High Ambier                              | nt 🗌 L                          | ow Suction          |          | t Value                    | s to        |                                  |
|             | O Eva    | aporator Level  |        |          |                                                                                                                |                 |               | Fast I                       |                           | Mev                         | imum Operat                | tina  |                                             | _                               |                     |          | Default                    |             |                                  |
|             | O Co     | ndenser Level   | • •    | OX Barre | el de la companya de |                 |               |                              |                           |                             | sure(MOP)                  | ung   |                                             | L                               | ow/High Leve        | el       |                            |             |                                  |
|             | Ο Αρ     |                 | 01     | looded I | Barrel                                                                                                         |                 | •             | Fast II                      |                           |                             | mum Differer<br>ssure(MDP) | ntial |                                             | <u></u> □ L                     | evel>CAP            |          |                            |             |                                  |
|             | éne n    | 89              |        | 22.      | 8                                                                                                              | 931 - A         |               |                              |                           | EXV Contro                  | Setpoints                  |       |                                             |                                 |                     |          |                            |             |                                  |
|             | •        | Name            | Value  | Min      | Max                                                                                                            | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active    |       | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Ext. Safety | Safety Tim<br>Extension<br>(SEC) |
|             | A 9      | ShTRG/ShAvg     | 12     | 8        | 18                                                                                                             | 0.1             | 1             | 1                            | 0                         | 0                           | Active                     | T     | TEMP                                        | View Only                       | Time                |          |                            |             |                                  |
| 2           | 10       | FAST ZONE       | 2      | 1.6      | 3                                                                                                              | 0.1             | 0             | 0                            | 0                         | 0                           | Active                     |       | TEMP                                        | View Only                       | Time                |          |                            |             |                                  |
| Compressor  | 11       | LdAdj/REHEAT    | 0.2    | 0        | 1                                                                                                              | 0.1             | 0             | 10                           | 0                         | 0                           | Active                     |       | UMD or 2                                    | View Only                       | Time                |          |                            |             |                                  |
| EXV Results | 12       | ShMpy/%SPRED    | 2      | 1        | 3                                                                                                              | 1               | 1             | 5                            | 0                         | 0                           | Active                     | D     | DIGITAL/SW                                  | View Only                       | Time                |          |                            |             |                                  |
|             | 13       | RcMpy/LSuMpy    | 2      | 1        | 3                                                                                                              | 1               | 3             | 5                            | 0                         | 0                           | Active                     | D     | DIGITAL/SW                                  | View Only                       | Time                |          |                            |             |                                  |
| →           | 14       | LmtZn/Lmt>Zn    | 0.5    | 0.3      | 0.5                                                                                                            | 0.1             | 0             | 0                            | 0                         | 0                           | Active                     | D     | DEC1NOCH                                    | View Only                       | Time                |          |                            |             |                                  |
| -           | 15       | VMIN/LShMpy     | 3      | 2        | 50                                                                                                             | 1               | 3             | 5                            | 0                         | 0                           | Active                     | H     | IUMD or %                                   | View Only                       | Time                |          |                            |             | ******                           |
| -           | 16       | VMAX/NOTUSED    | 100    | 60       | 100                                                                                                            | 1               | 0             | 0                            | 0                         | 0                           | Active                     |       | IUMD or 2                                   | View Only                       | Setpoint            |          |                            |             |                                  |
| -           | 17       | LSh'F'/TmFit    | 4      | 2        | 5                                                                                                              | 0.1             | 60            | 120                          | 2                         | 5                           | Active                     |       | TEMP                                        | View Only                       | Alarm               |          | . 0                        | 300         | 120                              |
|             | 18       | LsSTm/AdjTm     | 5      | 2        | 10                                                                                                             | 1               | 5             | 15                           | 0                         | 0                           | Active                     |       | SECONDS                                     | View Only                       | Time                | -        |                            |             |                                  |
| -           | 19       | EXVDly/Sprd     | 1      | 1        | 30                                                                                                             | 1               | 8             | 12                           | 0                         | 0                           | Active                     |       | SECONDS                                     | View Only                       | Time                |          |                            |             |                                  |
|             | 20       | EXVSTm/CmpDy    | 126    | 30       | 144                                                                                                            | 1               | 8             | 12                           | 0                         | 0                           | Active                     | 5     | SECONDS                                     | View Only                       | Time                |          |                            |             |                                  |
|             |          |                 |        |          |                                                                                                                |                 |               |                              |                           |                             | ler Setpoints              |       |                                             |                                 |                     |          |                            |             |                                  |
| Subcooler   | 1.       | Name            | Value  | Min      | Max                                                                                                            | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active    |       | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Ext. Safety | Safety Tim<br>Extension<br>(SEC) |
|             | 65       | SC FAST TARG    | 18     | 12       | 22                                                                                                             | 0.5             | 1             | 5                            | 0                         | 0                           | Active                     | T     | TEMP                                        | View Only                       | Time                |          |                            |             |                                  |
| EXV Results | 66       | SC FAST ZONE    | 2      | 1        | 3                                                                                                              | 0.5             | 2             | 5                            | 0                         | 0                           | Active                     |       | TEMP                                        | View Only                       | Time                |          |                            |             |                                  |
|             | 67       | SC SH/RC ADJ    | 0.3    | 0.1      | 1                                                                                                              | 0.1             | 1             | 50                           | 0                         | 0                           | Active                     | D     | DEC1NOCH                                    | View Only                       | Time                |          |                            |             | *****                            |
| →           | 68       | SC FAST LIMT    | 0.4    | 0.1      | 2                                                                                                              | 0.1             | 10            | 20                           | 0                         | 0                           | Active                     | D     | DEC1NOCH                                    | View Only                       | Time                |          |                            |             |                                  |
| E           | 69       | SC MIN/MAX V    | 2      | 1        | 20                                                                                                             | 1               | 100           | 100                          | 0                         | 0                           | Active                     | H     | UMD or %                                    | View Only                       | Time                |          |                            |             | *****                            |
|             | 70       | SC LOW SH       | 5      | 2        | 10                                                                                                             | 1               | 15            | 60                           | 0                         | 0                           | Active                     | T     | TEMP                                        | View Only                       | Setpoint            |          |                            |             |                                  |
|             | 71       | SC EXV DELAY    | 1      | 1        | 10                                                                                                             | 1               | 0             | 0                            | 0                         | 0                           | Active                     | S     | SECONDS                                     | View Only                       | Setpoint            |          |                            |             |                                  |
|             | 72       | SC START THE    | 5      | 1        | 120                                                                                                            | 1               | 0             | 0                            | 0                         | 0                           |                            |       | SECONDS                                     |                                 |                     |          |                            |             |                                  |

Based on your selections will dictate the set points for compressor control. The subcooler set points are only displayed if a subcooler id present.

# 28.4.2 Selection Options





NOTE: Once you have clicked on the boxes for your setup, be sure to click on 'Set Values to Default'. This will set the values to the default for 'Control Parameter, Heat Exchanger Type and the Control Method. Make note that clicking in the 'Target Modifier' require that some set points must be active.

| #  | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Activ | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
| 9  | FAST SH TRGT | 12    | 8   | 20  | 0.1             | 3             | 7                            | 0                         | 0                           | Active                 | <br>TEMP                                    | View Only                       | Time                |          |                            |                                       |                                   |
| 10 | FAST CTL ZN  | 1.6   | 1   | 3   | 0.1             | 0             | 0                            | 0                         | 0                           | Active                 | <br>TEMP                                    | View Only                       | Time                |          | . —                        |                                       |                                   |
| 11 | EXV LD/UNLD% | 0.3   | 0   | 0.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | View Only                       | Time                |          | . —                        |                                       |                                   |
| 12 | SH MPY/%SPRD | 2     | 1   | 3   | 1               | 0             | 0                            | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | View Only                       | Time                |          |                            |                                       | _                                 |
| 13 | ROC MPY/LSUC | 2     | 1   | 3   | 1               | 3             | 5                            | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | View Only                       | Time                |          |                            |                                       |                                   |
| 14 | LIMIT ADJUST | 1     | 0.1 | 1.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Active                 | <br>DEC1NOCH                                | View Only                       | Time                |          | . —                        |                                       |                                   |
| 15 | V MIN LS MPY | 3     | 2   | 25  | 1               | 2             | 5                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | View Only                       | Time                |          |                            |                                       |                                   |
| 16 | V MAX        | 100   | 50  | 100 | 1               | 0             | 1                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | View Only                       | Setpoint            |          |                            |                                       |                                   |
| 17 | LO SUPERHEAT | 3.5   | 2   | 5   | 0.1             | 60            | 120                          | 2                         | 10                          | Active                 | <br>TEMP                                    | View Only                       | Narm                |          | . 0                        | 300                                   | 120                               |
| 18 | LOW PSI DELY | 5     | 1   | 30  | 1               | 30            | 60                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | View Only                       | Time                |          |                            |                                       |                                   |
| 19 | EXV DELAY    | 1     | 1   | 30  | 1               | 0             | 0                            | 0                         | 0                           | Active                 | <br>SECONDS                                 | View Only                       | Time                |          |                            |                                       |                                   |
| 20 | EXV STRT TME | 126   | 1   | 270 | 9               | 10            | 10                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | View Only                       | Time                |          |                            |                                       |                                   |

28.4.3 **Compressor EXV Results** 

- Control on 'Suction Superheat'
- Evaporator Type 'Plate HX'
- Control Method 'Fast SSH2'
- MCS Default 'Selected'
- Degrees F or C are automatic

#### 28.4.4 **Subcooler EXV Results**

- If you have selected Fast SSH or Fast SSH2 and have a subcooler this will use set points 65 through 72. If you setup 'Subcooler EXV & Subcooler Suction PSI' MCS-Config will automatically complete set points 65 through 72 with MCS standard defaults.
- If this is an existing config and you are converting to Fast SSH or Fast SSH2 set points 253 through 255 will be spared out. (HVAC only)

|   |    |              |       |     |     |                 |     |                              | F                         | ast Subcool                 | er Setpoints            |                                             |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|-----|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | 1  | Name         | Value | Min | Мах | Adjust<br>Value |     | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
|   | 65 | SC FAST TARG | 18    | 12  | 22  | 0.5             | 1   | 5                            | 0                         | 0                           | Active                  | <br>TEMP                                    | View Only                       | Time                |          | —                          |                                       |                                   |
| • | 66 | SC FAST ZONE | 2     | 1   | 3   | 0.5             | 2   | 5                            | 0                         | 0                           | Active                  | <br>TEMP                                    | View Only                       | Time                |          |                            |                                       |                                   |
|   | 67 | SC SH/RC ADJ | 0.3   | 0.1 | 1   | 0.1             | 1   | 50                           | 0                         | 0                           | Active                  | <br>DEC1N0CH                                | View Only                       | Time                |          |                            |                                       |                                   |
|   | 68 | SC FAST LIMT | 0.4   | 0.1 | 2   | 0.1             | 10  | 20                           | 0                         | 0                           | Active                  | <br>DEC1NOCH                                | View Only                       | Time                |          |                            | —                                     |                                   |
|   | 69 | SC MIN/MAX V | 2     | 1   | 20  | 1               | 100 | 100                          | 0                         | 0                           | Active                  | <br>HUMD or %                               | View Only                       | Time                |          |                            |                                       |                                   |
|   | 70 | SC LOW SH    | 5     | 2   | 10  | 1               | 15  | 60                           | 0                         | 0                           | Active                  | <br>TEMP                                    | View Only                       | Setpoint            |          |                            | —                                     |                                   |
|   | 71 | SC EXV DELAY | 1     | 1   | 10  | 1               | 0   | 0                            | 0                         | 0                           |                         | SECONDS                                     | View Only                       | Setpoint            |          |                            |                                       |                                   |
|   | 72 | SC START THE | 5     | 1   | 120 | 1               | 0   | 0                            | 0                         | 0                           | Active                  | <br>SECONDS                                 | View Only                       | Setpoint            |          |                            |                                       |                                   |
| • |    |              |       |     |     |                 |     |                              |                           |                             |                         |                                             |                                 |                     |          |                            |                                       | •                                 |

- Set Points if Fast SSH or Fast SSH2 selected & you have a Sub Cooler
- Set Points 65 thru 72 are set up
- Degrees F or C are automatic

# With this release of MCS-Config MCS has developed Default Set Points for all EXV Types

# 28.4.5 MCS EXV Factory Default Set Point

|   |    |              |       |     |     |                 |               |                              |                           | EXV Contro                  | l Setpoints             |     |                                             |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|-----|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | #  | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active |     | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| ► | 9  | TARG/S STOP  | 12    | 8   | 20  | 0.1             | 2             | 7                            | 0                         | 0                           | Active                  |     | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 10 | FAST CTL ZN  | 2     | 1.6 | 3   | 0.1             | 0             | 0                            | 0                         | 0                           | Active                  |     | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 11 | EXV LD/UNLD% | 0     | 0   | 0.5 | 0.1             | 0             | 10                           | 0                         | 0                           | Active                  |     | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 12 | SH MPL/%SPRD | 1     | 1   | 3   | 1               | 5             | 10                           | 0                         | 0                           | Active                  | ••• | DIGITAL/SW                                  | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 13 | ROC MPY/LSUC | 1     | 1   | 3   | 1               | 4             | 15                           | 0                         | 0                           | Active                  | ••• | DIGITAL/SW                                  | Factory L(                      | Time                | -        |                            |                                       |                                   |
|   | 14 | LIMIT ADJUST | 0.5   | 0.1 | 1.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Active                  |     | DEC1NOCH                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 15 | VMIN/LSH MPY | 3     | 2   | 25  | 1               | 2             | 15                           | 0                         | 0                           | Active                  | ••• | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 16 | VMAX         | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                  | ••• | HUMD or %                                   | Factory L(                      | Setpoint            | -        |                            |                                       |                                   |
|   | 17 | LO SUPERHEAT | 3     | 2   | 5   | 0.1             | 60            | 300                          | 2                         | 10                          | Active                  |     | TEMP                                        | Factory L(                      | Alarm               |          | . 0                        | 300                                   | 120                               |
|   | 18 | LSUC/LSH DLY | 1     | 1   | 10  | 1               | 1             | 10                           | 0                         | 0                           | Active                  | ••• | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 19 | E DLY/S CALC | 1     | 1   | 30  | 1               | 0             | 10                           | 0                         | 0                           | Active                  | ••• | SECONDS                                     | Factory L(                      | Time                | -        |                            |                                       |                                   |
|   | 20 | E STRT/C DLY | 126   | 1   | 270 | 1               | 8             | 15                           | 0                         | 0                           | Active                  |     | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |

# 28.4.5.1. Fast SSH2, Suction Superheat, Plate HX

# 28.4.5.2. Fast SSH2, Suction Superheat, DX Coil

|    |              |       |     |     |                 |               |                              |                           | EXV Contro                  | l Setpoints             |      |                                             |                                 |                     |          |                            |                                       |                                   |
|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
| #  | Name         | ¥alue | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active |      | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| 9  | TARG/S STOP  | 10    | 8   | 18  | 0.1             | 4             | 7                            | 0                         | 0                           | Active                  |      | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
| 10 | FAST CTL ZN  | 2     | 1.6 | 3   | 0.1             | 0             | 0                            | 0                         | 0                           | Active                  | •••  | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
| 11 | EXV LD/UNLD% | 0.2   | 0   | 3   | 0.1             | 0             | 0                            | 0                         | 0                           | Active                  |      | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
| 12 | SH MPL/%SPRD | 1     | 1   | 3   | 1               | 0             | 5                            | 0                         | 0                           | Active                  |      | DIGITAL/SW                                  | Factory L(                      | Time                |          |                            |                                       |                                   |
| 13 | ROC MPY/LSUC | 2     | 1   | 3   | 1               | 3             | 5                            | 0                         | 0                           | Active                  | •••• | DIGITAL/SW                                  | Factory L(                      | Time                |          |                            |                                       |                                   |
| 14 | LIMIT ADJUST | 0.5   | 0.3 | 0.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Active                  |      | DEC1NOCH                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
| 15 | VMIN/LSH MPY | 3     | 2   | 50  | 1               | 3             | 5                            | 0                         | 0                           | Active                  |      | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
| 16 | VMAX         | 100   | 60  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                  | •••• | HUMD or %                                   | Factory L(                      | Setpoint            |          |                            |                                       |                                   |
| 17 | LO SUPERHEAT | 4     | 2   | 4   | 0.1             | 60            | 120                          | 2                         | 5                           | Active                  |      | TEMP                                        | Factory L(                      | Alarm               |          | 0                          | 300                                   | 120                               |
| 18 | LSUC/LSH DLY | 5     | 2   | 15  | 1               | 5             | 15                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |
| 19 | E DLY/S CALC | 20    | 1   | 60  | 1               | 8             | 12                           | 0                         | 0                           | Active                  | •••  | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |
| 20 | E STRT/C DLY | 126   | 30  | 180 | 1               | 8             | 12                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |

28.4.5.3. Fast SSH, Suction Superheat, DX Barrel

|   |    |              |       |     |     |                 |               |                              |                           | EXV Contro                  | I Setpoints             |                                             |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | #  | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| ► | 9  | TARG/S STOP  | 12    | 8   | 20  | 0.1             | 2             | 5                            | 0                         | 0                           | Active                  | <br>TEMP                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 10 | FAST CTL ZN  | 2     | 1.6 | 3   | 0.1             | 1             | 1                            | 0                         | 0                           | Active                  | <br>TEMP                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 11 | EXV LD/UNLD% | 0     | 0   | 0.5 | 0.1             | 0             | 10                           | 0                         | 0                           | Active                  | <br>HUMD or %                               | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 12 | SH MPL/%SPRD | 1     | 1   | 3   | 1               | 5             | 10                           | 0                         | 0                           | Active                  | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 13 | ROC MPY/LSUC | 1     | 1   | 3   | 1               | 4             | 15                           | 0                         | 0                           | Active                  | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 14 | LIMIT ADJUST | 0.2   | 0.1 | 0.4 | 0.1             | 3             | 6                            | 0                         | 0                           | Active                  | <br>DEC1NOCH                                | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 15 | VMIN/LSH MPY | 3     | 2   | 25  | 1               | 2             | 15                           | 0                         | 0                           | Active                  | <br>HUMD or %                               | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 16 | VMAX         | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                  | <br>HUMD or %                               | Factory L(                      | Setpoint            |          |                            |                                       |                                   |
|   | 17 | LO SUPERHEAT | 3     | 1   | 5   | 0.1             | 120           | 300                          | 2                         | 10                          | Active                  | <br>TEMP                                    | Factory L(                      | Alarm               |          | 0                          | 300                                   | 120                               |
|   | 18 | LSUC/LSH DLY | 1     | 1   | 10  | 1               | 1             | 10                           | 0                         | 0                           | Active                  | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 19 | E DLY/S CALC | 1     | 1   | 30  | 1               | 10            | 10                           | 0                         | 0                           | Active                  | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 20 | E STRT/C DLY | 126   | 1   | 270 | 1               | 8             | 15                           | 0                         | 0                           | Active                  | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |

(Samples of Fast SSH & Fast SSH2 most often used)

# 28.4.5.4. Fast SSH2, Discharge Superheat, DX Barrel

|   |    |              |       |     |     |                 |    |                              |                           | EXV Contro                  | l Setpoints            |                                             |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|----|------------------------------|---------------------------|-----------------------------|------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | #  | Name         | Value | Min | Max | Adjust<br>Value |    | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Activ | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| ► | 9  | DShTRG/ShAvg | 30    | 22  | 40  | 0.1             | 1  | 1                            | 0                         | 0                           | Active                 | <br>TEMP                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 10 | FAST ZONE    | 2     | 1.6 | 3   | 0.1             | 0  | 0                            | 0                         | 0                           | Active                 | <br>TEMP                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 11 | LdAdj/REHEAT | 0.2   | 0   | 3   | 0.1             | 0  | 10                           | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 12 | ShMpy/%SPRED | 2     | 1   | 3   | 1               | 0  | 5                            | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 13 | RcMpy/LSuMpy | 2     | 1   | 3   | 1               | 3  | 5                            | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 14 | LmtZn/Lmt>Zn | 0.5   | 0.3 | 0.5 | 0.1             | 0  | 0                            | 0                         | 0                           | Active                 | <br>DEC1NOCH                                | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 15 | VMIN/LShMpy  | 3     | 2   | 50  | 1               | 3  | 5                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L                       | Time                |          |                            |                                       |                                   |
|   | 16 | VMAX/NOTUSED | 100   | 60  | 100 | 1               | 0  | 0                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L(                      | Setpoint            |          |                            |                                       |                                   |
|   | 17 | LSh'F'/TmFlt | 4     | 2   | 4   | 0.1             | 60 | 120                          | 2                         | 5                           | Active                 | <br>TEMP                                    | Factory L(                      | Alarm               |          | 0                          | 300                                   | 120                               |
|   | 18 | LsSTm/AdjTm  | 5     | 2   | 15  | 1               | 5  | 15                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 19 | EXVDly/Sprd  | 1     | 1   | 60  | 1               | 8  | 12                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 20 | EXVSTm/CmpDy | 126   | 30  | 135 | 1               | 8  | 12                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |

# 28.4.5.5. Fast SSH, Suction Superheat, DX Barrel

|   |    |              |       |     |     |                 |               |                              |                           | EXV Contro                  | I Setpoints             |      |                                             |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | #  | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active |      | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| Þ | 9  | TARG/S STOP  | 12    | 8   | 20  | 0.1             | 2             | 5                            | 0                         | 0                           | Active                  | •••• | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 10 | FAST CTL ZN  | 2     | 1.6 | 3   | 0.1             | 1             | 1                            | 0                         | 0                           | Active                  |      | TEMP                                        | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 11 | EXV LD/UNLD% | 0     | 0   | 0.5 | 0.1             | 0             | 10                           | 0                         | 0                           | Active                  |      | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 12 | SH MPL/%SPRD | 1     | 1   | 3   | 1               | 5             | 10                           | 0                         | 0                           | Active                  | •••• | DIGITAL/SW                                  | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 13 | ROC MPY/LSUC | 1     | 1   | 3   | 1               | 4             | 15                           | 0                         | 0                           | Active                  | •••• | DIGITAL/SW                                  | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 14 | LIMIT ADJUST | 0.2   | 0.1 | 0.4 | 0.1             | 3             | 6                            | 0                         | 0                           | Active                  | •••• | DEC1NOCH                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 15 | VMIN/LSH MPY | 3     | 2   | 25  | 1               | 2             | 15                           | 0                         | 0                           | Active                  |      | HUMD or %                                   | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 16 | VMAX         | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                  |      | HUMD or %                                   | Factory L(                      | Setpoint            |          |                            |                                       |                                   |
|   | 17 | LO SUPERHEAT | 3     | 1   | 5   | 0.1             | 120           | 300                          | 2                         | 10                          | Active                  | •••• | TEMP                                        | Factory L(                      | Alarm               |          | . 0                        | 300                                   | 120                               |
|   | 18 | LSUC/LSH DLY | 1     | 1   | 10  | 1               | 1             | 10                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 19 | E DLY/S CALC | 1     | 1   | 30  | 1               | 10            | 10                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 20 | E STRT/C DLY | 126   | 1   | 270 | 1               | 8             | 15                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Factory L                       | Time                |          |                            |                                       |                                   |

# 28.4.5.6. Suct Spht, Suction Superheat, DX Barrel

|   |    |              |       |     |     |                 |               |                              |                           | EXV Contro                  | I Setpoints            | <br>                                        |                                 |                     |          |                            |                                       |                                   |
|---|----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|
|   | #  | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Activ | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| Þ | 9  | TARG/S STOP  | 12    | 8   | 20  | 0.1             | 2             | 5                            | 0                         | 0                           | Active                 | <br>TEMP                                    | Factory L(                      | Time                |          | [                          |                                       |                                   |
|   | 10 | FAST CTL ZN  | 2     | 1.6 | 3   | 0.1             | 1             | 1                            | 0                         | 0                           | Active                 | <br>TEMP                                    | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 11 | EXV LD/UNLD% | 0     | 0   | 0.5 | 0.1             | 0             | 10                           | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 12 | SH MPL/%SPRD | 1     | 1   | 3   | 1               | 5             | 10                           | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 13 | ROC MPY/LSUC | 1     | 1   | 3   | 1               | 4             | 15                           | 0                         | 0                           | Active                 | <br>DIGITAL/SW                              | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 14 | LIMIT ADJUST | 0.2   | 0.1 | 0.4 | 0.1             | 3             | 6                            | 0                         | 0                           | Active                 | <br>DEC1NOCH                                | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 15 | VMIN/LSH MPY | 3     | 2   | 25  | 1               | 2             | 15                           | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 16 | VMAX         | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                 | <br>HUMD or %                               | Factory L(                      | Setpoint            |          |                            |                                       |                                   |
|   | 17 | LO SUPERHEAT | 3     | 1   | 5   | 0.1             | 120           | 300                          | 2                         | 10                          | Active                 | <br>TEMP                                    | Factory L(                      | Alarm               |          | 0                          | 300                                   | 120                               |
|   | 18 | LSUC/LSH DLY | 1     | 1   | 10  | 1               | 1             | 10                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 19 | E DLY/S CALC | 1     | 1   | 30  | 1               | 10            | 10                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory L(                      | Time                |          |                            |                                       |                                   |
|   | 20 | E STRT/C DLY | 126   | 1   | 270 | 1               | 8             | 15                           | 0                         | 0                           | Active                 | <br>SECONDS                                 | Factory Li                      | Time                |          |                            |                                       |                                   |

# 28.5. Set Point Descriptions (Fast SSH & Fast SSH2)

Fast SSH set points Available in MCS release 17.26-B and later

### Fast SSH2 set points Available in MCS release 17.41 and later

| SP # | Name                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9    | EXV Target                                                                      | (Value Field) – This is the superheat target the system will make adjustments to the Electronic Expansion Valve to maintain.                                                                                                                                                                                                                                                                   |
|      |                                                                                 | <ul> <li>(Time Field) – In Fast SSH when in low suction psi this is the number of seconds the suction psi must be increasing before the systems stops adjusting the valve.</li> <li>(Time Field) - In Fast SSH2 it is the number of seconds to calculate the extended slope. When in low suction, adjustments are stopped when the suction pressure slope is positive for 1 second.</li> </ul> |
| 10   | EXV Fast Zone                                                                   | <ul> <li>((Value Field) – The system makes adjustments to the EXV Valve percentage to maintain the superheat within this range.</li> <li>(Time Field) – The Time Field is not used.</li> </ul>                                                                                                                                                                                                 |
| 11   | EXV Adjustment<br>made when a<br>modulating<br>compressor's<br>capacity changes | <ul> <li>(Value Field) – The opening adjustment that is made to the EXV current valve % when the circuit changes to the loading state or the closing adjustment that is made when the circuit changes to the unloading state. When in the MOP hold state, only closing adjustments are allowed.</li> <li>(Time Field) – When &gt; zero it is used to increase the hold time.</li> </ul>        |
| 12   | Super Heat adjust<br>multiplier                                                 | <ul> <li>(Value Field) – This value is used to multiply times the calculated value of superheat target – current superheat target value. (The difference from where we want to be verses where we are)</li> <li>(Time Field) – The maximum different between two EXV's on the same circuit allowed once out of startup and under control.</li> </ul>                                           |

|    | Ï                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Rate of Change adjust multiplier | (Value Field) - This value is used to multiply times the calculated value of current superheat – the superheat value one second ago. (The slope of the current superheat)                                                                                                                                                                                                                                                                                                                            |
|    |                                  | Time Field) – If set point type = 'Time' and Time Field is $\geq 2$ and $\leq 100$ this is the adjustment multiplier for when the system is in Low Suction. It takes the base valve adjustment of 0.5% and multiplies it with this value. Adjustments stop when the suction psi starts too increase. (See set point 9 time field for additional information.) If the conditions are not met then a value of 0.5 is used. (Delay between adjustments is specified in the value field of SP 17.)       |
| 14 | Limit of Adjustment              | (Value Field) – In FSH this value limits the adjustment while the superheat is < then the Fast Zone times two. In FSH2 this value is the maximum limit of the adjustment.                                                                                                                                                                                                                                                                                                                            |
|    |                                  | (Time Field) - In FSH this value is the limit of adjustment when the superheat > then<br>two times the Fast Zone. Remember in the value field of this set point you are typically<br>using a value of 0.2 to 0.5. In the time field a value of 7 is equivalent to 0.7.<br>(Time Field) - In FSH2 this field is not used.                                                                                                                                                                             |
| 15 | Minimum EXV Valve<br>%           | (Value Field) – The minimum position of the valve. Usually 3%. Will need to be larger if hot gas is on system.                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                  | (Time Field) - The adjustment multiplier for when the system is in Low Superheat.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16 | Maximum EXV Valve<br>%           | (Value Field) – The maximum position of the valve allowed. Usually 100%. Sometimes used if valve is oversized.                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                                  | (Time Field) – Not Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17 | Low Superheat                    | (Value Field) – If the superheat falls below this value and stays below for longer than<br>the number of seconds specified in the Time Field, of this set point, the system will enter<br>a safety, generate an alarm and shut off this compressor then restart if required. If this<br>specifies a lockout then it will follow the lockout rules. In FSH and FSH2 the system will<br>take corrective action to correct this potential problem.                                                      |
|    |                                  | (Time Field) – Timer for this set point as described.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18 | Low Psi Delay                    | (Value Field) – The value specifies the number of seconds between valve adjustments, (for Low Suction) trying to correct this situation. Adjustments will continue until the slope of the suction pressure starts to increase.                                                                                                                                                                                                                                                                       |
|    |                                  | (Time Field) – This value specifies the number of seconds delay between adjustments, (for Low Superheat) trying to correct this situation. Adjustments continue until the super-<br>heat is above the Value Field.                                                                                                                                                                                                                                                                                   |
| 19 | EXV Delay                        | (Value field) – The value in this field id decremented by the difference between the absolute value of the current superheat – superheat target. When the result reaches zero the FSH & FSH2 make the current calculated adjustment to the current valve percentage.                                                                                                                                                                                                                                 |
|    |                                  | (Time Field) – The value in the time field determines when control will begin when two EXV's are on the same circuit. This value times the value field in the fast zone plus the current target defines when control is taken, at startup. If this value is 10 and the value in the fast zone is 2 and the target is 12 the result would be $(10 * 2 + 12) = 32\%$ . When both values are $\leq$ this % control is taken and then kept within the value specified in the time field of set point 12. |
| 20 | EXV Startup Time                 | (Value Field) – EXV starting time in seconds. The following decisions are made on taking control:<br>a). If the current superheat is > target + 5.0 ° & State timer > Startup time / 2 Take                                                                                                                                                                                                                                                                                                          |
|    |                                  | control.<br>b). If the current superheat is < target – Fast zone & State timer > Startup time / 2<br>Take Control.                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                  | <ul> <li>c). If the Suct psi is &lt; Low Suct SP + Low unload &amp; State timer &gt; Startup time / 2 Take Control.</li> <li>d). If the EXV startup time ≥ 90 &amp; a) or b) is true adjust the valve start percentage</li> </ul>                                                                                                                                                                                                                                                                    |
|    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# 28.5.1 Set Point Adjustments

Fast SSH & Fast SSH2 Common adjustments

When using FSH or FSH2 you should not experience a low suction or low superheat alarm unless you are low on refrigerant or have a mechanical problem. (If you bring on too much condenser that causes the head psi to drop too quickly it will also pull the suction psi with it.) Set the multiplier of SP 13 'Time Field' to a value high enough to recover from a low suction.

# 28.5.2 Low Suction Multiplier-SP 13

'Time Field' is a multiplier for the change being made to adjust for a Low Suction condition. The MCS Default is 2. If a low suction occurs and the system does not recover in time, an a low suction alarm occurs increase SP 13 Time Field by 1.

If a low suction occurs and the system over corrects, (that is the EXV valve opens more than is required) then reduce SP 13 Time Field by 1.

If an alarm occurs you can increase the multiplier and or decrease the time delay between adjustments. (Set Point 18 Value Field)

# 28.5.2.1. Low Superheat Adjustment-SP 15

'Time Field' is a multiplier for the change being made to adjust for a Low Superheat condition. The MCS Default is 2.

If a low superheat occurs and the system over corrects, (the EXV valve closes more than is required) then reduce SP 15 Time Field by 1.

If an alarm occurs you can increase the multiplier and or decrease the time delay between adjustments. (Set Point 18 Time Field)

# 28.5.2.2. EXV Startup Time-SP 20

'Value Field' specifies the maximum time the valve will remain in the EXV Startup State. If the value is less than 90 seconds the Magnum will remain in this state for the entire time specified unless it reaches one of the startup exit conditions covered in SP 20. It is not recommended to make this value less than 25 seconds.

If the value is  $\geq$  90 the Magnum will calculate a new valve opening percentage, if required. When setting a value of 90, or greater it is recommended it be in increments of 9 for Fast SSH. For Fast SSH the Magnum starts evaluating it's position after 44% of its startup time has passed. In Fast SSH2 it starts evaluation after 50% of its startup time has passed.

# 28.5.2.3. EXV Compressor Start Delay-SP 20

'Time Field' specifies the number of seconds to delay starting the compressor to allow the valve to partially open. MCS recommends 8 to 10 seconds and not more than 15 seconds. Remember this is part of the EXV startup time.

# 28.5.2.4. EXV Target & EXV Fast Zone-SP 9

'Value Field' specifies the superheat target we want to achieve and SP 10 'Value Field' specifies the Control Zone we are maintaining. The table shows the MCS recommendations for both English and Metric.

| Units     |      | English  | Metric |     |      |     |  |  |  |
|-----------|------|----------|--------|-----|------|-----|--|--|--|
| Range     | Low  | Standard | High   | Low | High |     |  |  |  |
| Superheat | 10.0 | 12.0     | 14.0   | 5.6 | 6.7  | 7.8 |  |  |  |
| Fast Zone | 1.6  | 2.0      | 3.0    | 0.9 | 1.1  | 1.7 |  |  |  |

# 28.6. Fast SSH States

Listed below shows the format of the states used.

# EXV-AA-BB-CCCC

| -DD- |         |                                                                             |              | 1    |                            |
|------|---------|-----------------------------------------------------------------------------|--------------|------|----------------------------|
| AA   | DESC.   | BB                                                                          | DESC         | CCCC | DESC.                      |
| HD   | HOLDING | >T                                                                          | GREATER TARG | RcSm | RATE OF CHANGE SMALL       |
| OP   | OPENING | <t< td=""><td>LESS TARG</td><td>RcLg</td><td>RATE OF CHANGE LARGE</td></t<> | LESS TARG    | RcLg | RATE OF CHANGE LARGE       |
| CL   | CLOSING | Sh                                                                          | SUPERHEAT    | ShHi | SUPERHEAT HIGH             |
|      |         |                                                                             |              | ShSm | SUPERHEAT SMALL            |
|      |         |                                                                             |              | Rc=0 | RATE OF CHANGE EQUALS ZERO |
|      |         |                                                                             |              | InDb | IN DEAD BAND               |
|      |         |                                                                             |              | InZn | IN ZONE                    |

#### 28.6.1 **FAST SSH2 State Format**

Listed below shows the format of the states used.

# EXV-AA-BB-CCCC

|    |         | 4                                 |                |
|----|---------|-----------------------------------|----------------|
| AA | DESC.   | BB                                | DESC           |
| HD | HOLDING | >T                                | GREATER TARG   |
| OP | OPENING | <t< td=""><td>LESS TARG</td></t<> | LESS TARG      |
| CL | CLOSING | Es                                | EXTENDED SLOPE |
|    |         | Sh                                | SUPERHEAT      |
|    |         |                                   |                |
|    |         |                                   |                |
|    |         |                                   |                |
|    |         |                                   |                |
|    |         |                                   |                |
|    |         |                                   |                |
|    |         |                                   |                |
|    | İ       |                                   |                |

| <b>_</b> |                            |
|----------|----------------------------|
| CCCC     | DESC.                      |
| EsLo     | EXTENDED SLOPE LOW         |
| EsHi     | EXTENDED SLOPE HIGH        |
| 0 OR 1   | EXTENDED SLOPE IS 0 OR 1   |
| = T      | SUPERHEAT EQUALS TARGET    |
| ShHi     | SUPERHEAT HIGH             |
| ShLo     | SUPERHEAT LOW              |
| St=5     | STATE TIMER EQUALS 5       |
| RcSm     | RATE OF CHANGE SMALL       |
| RcLg     | RATE OF CHANGE LARGE       |
| Rc=0     | RATE OF CHANGE EQUALS ZERO |
| InDb     | IN DEAD BAND               |
| InZn     | IN ZONE                    |

# Chapter - 29. General Introduction to EXV PID

# **29.1. MCS PID REQUIREMENTS**

- FIRMWARE
- 17.60E4 or greater 18.26.11 or greater
- MCS-CONNECT 18.26.1
   MCS-CONFIG 18.01N
  - S-CONFIG 18.01N or greater
- An EXV PID controller uses information about: PRESENT, PAST and errors to adjust the Expansion Valve.
- **EXV PID automatically applies accurate and responsive correction to a control function.**

| Ρ | PROPORTIONAL (Kp) | Change in Superheat   | <ul> <li>Current Superheat minus last Superheat from<br/>1 second ago (Rate of Change)</li> </ul>                 |
|---|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| I | INTEGRAL (Ki)     | Offset in Superheat   | <ul> <li>Current Superheat minus Target Superheat<br/>(setpoint #9 value field)</li> </ul>                        |
| D | DERIVATIVE (Kd)   | Velocity of Superheat | <ul> <li>Current Superheat minus the Superheat from<br/>x seconds ago (setpoint #9 time seconds value)</li> </ul> |
| A | ACCELERATION (Ka) | Change in Velocity    | = Current Kd minus the Kd from x seconds ago<br>(setpoint #9 time seconds value)                                  |

# 29.2. Calculations for the adjustment to EXV valve

MCS EXV PID algorithm uses two different sets of K multipliers to calculate adjustments to EXV on how far the superheat is from the superheat target, (setpoint #9 value field).

| FAST        |          | Setpoints    |        |       |        |       |        |         |       | SLO<br>multipl |  |
|-------------|----------|--------------|--------|-------|--------|-------|--------|---------|-------|----------------|--|
| multiplier  | <b>S</b> | SetPoints    | Value  | Time  | SEC Ig | windo | safety | HI zone | LOW z | Setback        |  |
|             | 1        | COOL TARGET  | 46.0F  |       |        |       |        |         |       |                |  |
|             | 2        | CTRL ZONE+   | 0.5F   |       |        |       |        |         |       |                |  |
|             | 3        | CTRL ZONE-   | 0.5F   |       |        |       |        |         |       |                |  |
|             | 8        | CHAM LIQ INJ | 180.0F |       |        |       |        |         |       |                |  |
|             | 9        | SucSprHtTarg | 12.0F  | 6 S   |        |       |        | 4.0F    | 3.5F  | 0.0            |  |
|             | 10       | Ki-IntegMult | 0.10   | 0 S   |        |       |        | 2.20    | -2.20 | 0.10           |  |
| PID 🗕       | 12       | Kp-PropMult  | 0.30   | 0 S   |        |       |        | 0.00    | 0.00  | 0.20           |  |
| multipliers | 13       | Kd-DerrMult  | 0.17   | 0 S   |        |       |        | 0.20    | -0.20 | 0.17           |  |
| -           | 14       | Ka-AccMult   | 0.10   | 0 S   |        |       |        | 0.00    | 0.00  | 0.00           |  |
| setpoints   | 15       | ExvMinValve% | 5.0%   |       |        |       |        |         |       |                |  |
|             | 16       | ExvMaxValve% | 100    | 0 S   |        |       |        | 0.0%    | 0.0%  | <b>15.0%</b>   |  |
|             | 17       | LoSucSuperHt | 3.5F   | 120 S | 15     | 300   | 60     |         |       |                |  |
|             | 19       | ExvKiDelay   | 30s    |       |        |       |        |         |       |                |  |
|             | 20       | ExvStartup   | 10s    | 5 S   |        |       |        |         |       |                |  |

# 29.3. EXV PID Firmware

Uses information about: PRESENT, PAST and errors to adjust the Expansion Valve.

- Provides extremely fast reaction to changes in superheat caused in part by the following:
  - High ambient chiller running in low ambient conditions.
  - Condenser fans turning on or off creating large changes in discharge and suction pressure .
  - Subcooling going temporarily negative and not having a solid column of liquid for short periods.
  - · Large subcooler / economizers coming on and off.

# **EXV PID Logic supports:**

• Suction Superheat, Discharge Superheat, Evaporator Level and Condenser Level Control.

# **29.4. MCS PID REQUIREMENTS**

- FIRMWARE 17.60E4 or greater
- MCS-CONNECT 18.26.11 or greater
- MCS-CONFIG 18.01N or greater

# 29.5. Selecting PID in MCS-CONFIG

In PID only setpoints 9 through 20 are used to control the EXV valve. If you select PID as your superheat EXV control and you have a subcooler (an economizer injecting refrigerant into the compression chamber) you will get PIP control on the EXV for the subcooler. The PID set points for the subcooler are 65 through 72. Select Type of Control in Relay Output Information Screen. In the RO screen, from the drop down window in 'Type' you select either 'Step w \ EXV' or 'Screw w \ EXV'.

|                 | Relay Output Information Screen |   |  |  |   |   |   |    |             |  |  |  |  |  |
|-----------------|---------------------------------|---|--|--|---|---|---|----|-------------|--|--|--|--|--|
| Point<br>Number |                                 |   |  |  |   |   |   |    |             |  |  |  |  |  |
| <b>I</b> -1     | COMP 1                          | — |  |  | — | — | 0 | 35 | Step w\ EXV |  |  |  |  |  |
| <b>4</b> -2     | CHAM INJ 1                      |   |  |  |   |   |   |    | Standard    |  |  |  |  |  |
| 4-3             | ECONO 1                         |   |  |  |   |   | 0 | 20 | Step w\ EXV |  |  |  |  |  |
| <b>4</b> -4     | REV VLV 1                       |   |  |  |   |   |   |    | Standard    |  |  |  |  |  |

# 29.6. Circuit Base

In the Circuit Base screen you need to select the Analog Output for the EXV.

|   |                           |     |             |            | Sel                                            | ect Output and            | Sensor Inputs             | per circuit |                          |     |       |             |    |
|---|---------------------------|-----|-------------|------------|------------------------------------------------|---------------------------|---------------------------|-------------|--------------------------|-----|-------|-------------|----|
|   | Circ<br>#<br>(res<br>huth | et  | Alarm Relay | Comp Proof | Compr<br>Speed(%) or<br>Modulate Hot<br>Gas AN | Compressor<br>Speed Fault | Slide Closed<br>Indicator | Pump Down   | Evaporator<br>EXV Output |     | Flow  | J           |    |
|   | 1                         |     | Not Used    | Not Used   | COMP1 SPD                                      | Cmp1VfdFl                 | Not Used                  | DISABLE 1   | Exv#1-PID 🔽 C            | :MF | 21 FL | . <b>O'</b> | N  |
|   | 2                         |     | Not Used    | Not Used   | COMP2 SPD                                      | Cmp2VfdFI                 | Not Used                  | DISABLE 2   | RO                       | Т   |       | • !         | N  |
|   | 3                         |     | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE 7-5                | Т   |       |             | ٧  |
|   | 4                         |     | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE 7-6                | T   |       |             | ۰V |
|   | 5                         |     | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE7-7                 | Ŧ   |       |             | ٧  |
|   | 6                         |     | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE7-8                 | Ŧ   |       |             | ۰V |
|   | 7                         | ••• | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE7-9                 | ÷   | _     |             | ٧. |
|   | 8                         |     | Not Used    | Not Used   | Not Used                                       | Not Used                  | Not Used                  | Not Used    | SPARE7-10                | ╉   | _     |             | W. |
| • | <b>^</b>                  |     | N-C11J      | M-1 11     | M-11                                           | M-1 11                    | M-11                      | M-611       | COMP1 SPD%               | ╉   |       |             |    |
|   | _                         |     |             |            |                                                |                           |                           |             | COMP2 SPD%               | t   |       |             |    |
|   |                           |     |             |            |                                                |                           |                           |             | Exv#1-PID                |     | ·     | -           |    |



Next in the Circuit Base screen you need to select 'PIP SSH' from the Evaporator EXV Control section drop down menu.

## NOTE: TANDEM 6 EXV PER CIRCUIT NOT SUPPORTED IN RTU AND CENTRIFUGAL FIRMWARE

|                               | Information that relates to Condensers and Evaporators on the circuit |                     |                           |                           |                               |                    |                    |                    |                    |                           |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------|---------------------|---------------------------|---------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------------|--|--|--|--|
| Starting<br>ondenser<br>Fault | #<br>Cond<br>Faults                                                   | Cond<br>Fan<br>Bank | Condenser<br>Coil Temp #1 | Condenser<br>Coil Temp #2 | Tandem<br>EXV<br>Circuit<br># | EXV #3<br>Circuit# | EXV #4<br>Circuit# | EXV #5<br>Circuit# | EXV #6<br>Circuit# | Evaporator EXV<br>Control |  |  |  |  |
| Used                          | 0                                                                     | 1                   | Not Used                  | Not Used                  | 1                             | 1                  | 1                  | 1                  | 1                  | PID Cond Lvl              |  |  |  |  |
| Used                          | 0                                                                     | 2                   | Not Used                  | Not Used                  | 2                             | 2                  | 2                  | 2                  | 2                  | PID Cond Lvl              |  |  |  |  |

The MAGNUM supports up to 6 tandem EXVs per circuit. **NOT AVAILABLE** with RTU and Centrifugal firmware With the release of Fast SSH2 AND PID MCS has released a new MCS-Config to support the new functions. The new MCS-Config provides a new tab, 'EXV Control', where you define your system. This then allows MCS-Config to provide MCS Default Set Point Values for you. The figure below shows the Current 'Circuit Base' tab and the new 'EXV Control' tab.

| File | Edi | t Wind | ow Hel | р   |     |     |          |              |            |           |      |          |            |             |
|------|-----|--------|--------|-----|-----|-----|----------|--------------|------------|-----------|------|----------|------------|-------------|
|      | 5   | System | Setup  | ROs | Sls | AOs | MAG HVAC | Circuit Base | Circuit SI | Setpoints | Auth | Schedule | BMS Points | EXV Control |
|      |     |        |        |     |     |     |          |              |            |           |      |          |            |             |




If you enter data in the EXV portion of the Circuit Base tab or in the EXV Control tab it is carried through to the other tab.

# 29.7. Selecting the 'EXV Control' tab you are prompted with the following:

|                          |     |          |                              |          |           |           |                 |               |                              |                           |                             | EXV                     | Control Wi                                  | zard                            |                     |              |                            |      |
|--------------------------|-----|----------|------------------------------|----------|-----------|-----------|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|--------------|----------------------------|------|
| Selection                |     |          |                              |          |           |           |                 |               |                              |                           |                             |                         |                                             |                                 |                     |              |                            |      |
| Option 🗲                 | Co  | ntrol    | Parameter                    | Heat     | t Exchan  | ger Type  |                 | (             | Control Me                   | hod                       |                             |                         | Target Modif                                | ier                             |                     | Set D        | efault                     |      |
|                          | • 5 | Suction  | Superheat                    | ON       | 000       |           |                 | 0             | Normal (Origin               | al)                       |                             | Low Discharge Su        | penheat                                     | Target Re                       | set                 | Val          | ues?                       |      |
| (Evaporator and          | CIE | liechar  | ge Superheat                 |          |           |           |                 |               |                              |                           |                             |                         |                                             |                                 |                     | Firmware Ver |                            | or   |
| condenser Level not      |     |          |                              |          | X Coil    |           |                 | 0             | Fast I                       |                           |                             | Oversized Conden        | ser/High Ambient                            | Low Suction                     | ion                 | Higher       | Required                   |      |
| available with Fast      | O E | vapora   | ator Level                   | 0 PI     | ate HX    |           |                 |               | Fast II                      |                           | _                           | Maximum Operatin        | - Francisco (MOD)                           | Low/High                        | ( and               | MCS          | User                       | r I  |
| I or Fast II Control     | 0.0 | onden    | ser Level                    | 💿 D.     | X Barrel  |           |                 |               | T GSC II                     |                           |                             | Maximum Operatin        | g riessure(mor)                             | j Low/high                      | Level               | Defaults     | Defau                      | ts   |
| Method)                  | 0 A | pproad   | ch                           | ОВ       | coded Bar | Tel       |                 | •             | PID                          |                           |                             | Minimum Differenta      | al Pressure(MDP)                            | Level->C                        | AP                  | Create D     | efaults Fi                 | le   |
|                          | -   |          |                              |          |           |           |                 |               |                              |                           |                             |                         |                                             |                                 |                     | EXV Cont     | rol Setpoi                 | nts  |
|                          |     | #        | Name                         | Value    | Min       | Max       | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments     | SEC to<br>Ignore<br>Safety | Ext. |
|                          | ┶┲╴ | 9        | SucSprHtTarg                 | 12       | 8         | 20        | 0.1             | 6             | 9                            | 0                         | 0                           | Active                  | TEMP                                        | Service L                       | Target              |              |                            |      |
| Compressor               |     | 10       | Ki-IntegMult                 | 0.15     | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           | Active .                | . DEC2NOCH                                  | Service L                       | Target              |              |                            |      |
|                          |     | 11       | EXV LD/UNLD%                 | 0        | 0         | 0.5       | 0.1             | 0             | 0                            |                           | 0                           |                         | HUMD or %                                   | Service L                       | Time                |              |                            |      |
| EXV Results              |     | 12       | Kp-PropMult                  | 0.3      | 0         | 3         | 0.01            | 0             | 0                            |                           | 0                           |                         | DEC2NOCH                                    | Service L                       | Target              |              |                            |      |
| →                        |     | 13       | Kd-DerivMult                 | 0.2      | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           |                         | DEC2NOCH                                    | Service L                       | Target              | -            |                            |      |
| 7                        |     | 14       | Ka-AcclMult                  | 0.1      | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           |                         | . DEC2NOCH                                  | Service L                       | Target              |              |                            |      |
|                          | ┲╧┥ | 15<br>16 | ExvMinValve%<br>ExvMaxValve% | 5<br>100 | 2<br>50   | 25<br>100 | 1               | 2             | 10<br>0                      | 0<br>0                    | 0                           |                         | HUMD or %<br>HUMD or %                      | Service L                       | Setpoint            | -            |                            |      |
|                          | Н   | 17       | LO SUPERHEAT                 | 3.5      | 2         | 4         | 0.1             | 120           | 180                          | 2                         | 10                          |                         | TEMP                                        | Service L<br>Service L          | Target<br>Lockout   |              |                            | 300  |
|                          | Н   | 18       | LOW PSI DELY                 | 1        | 1         | 30        | 1               | 3             | 60                           | 0                         | 0                           | Non-Active              |                                             | Service L                       | Time                |              | · 1.3                      | 500  |
|                          |     | 19       | ExyKiDelay                   | 15       | 1         | 120       | 1               | 0             | 0                            | 0                         | 0                           |                         | . SECONDS                                   | Service L                       | Setpoint            |              |                            |      |
|                          | H   | 20       | ExvStartup                   | 10       | 5         | 45        | 1               | 5             | 10                           | 0                         | 0                           |                         | . SECONDS                                   | Service L                       | Time                |              |                            |      |
|                          |     |          |                              |          |           |           | -               | -             |                              | -                         |                             |                         |                                             | 1                               | 1                   |              |                            |      |
|                          |     |          |                              |          |           |           |                 |               |                              |                           |                             |                         |                                             |                                 |                     | EXV Cont     | rol Setpoir                | nts  |
| Cubaalar                 |     | #        | Name                         | Value    | Min       | Max       | Adjust          | Time          | Max Time                     | Lockout                   | Safety                      | Active or               | Select Value:                               | Level Of                        | Type of             | Comments     | SEC to                     |      |
| Subcooler<br>EXV Results |     |          |                              |          |           |           | ¥alue           | (SEC)         | Allowed<br>(SEC)             | Delay<br>(HRS)            | Down<br>Time(MIN)           | Non-Active              | # decimals &<br>print char                  | Auth. To<br>Display             | Setpoint            |              | lgnore<br>Safety           |      |
| EAV Results              |     | 65       | SCExvTarget                  | 19       | 12        | 22        | 0.5             | 6             | 12                           | 0                         | 0                           | Active .                | . TEMP                                      | Service L                       | Target              |              |                            |      |
| →                        |     | 66       | SCExvKIntegr                 | 0.25     | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           |                         | . DEC2NOCH                                  | Service L                       | Target              |              |                            |      |
| -                        |     | 67       | SCEXvKProp                   | 0.35     | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           | Active                  | DEC2NOCH                                    | Service L                       | Target              |              |                            |      |
| <b>-</b>                 |     | 68       | SCExvKDeriv                  | 0.25     | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           |                         | DEC2NOCH                                    | Service L                       | Target              |              |                            |      |
|                          |     | 69       | SCExvKAccel                  | 0.1      | 0         | 3         | 0.01            | 0             | 0                            | 0                         | 0                           |                         | . DEC2NOCH                                  | Service L                       | Target              |              |                            |      |
|                          |     | 70       | SCLowSprht                   | 5        | 3         | 8         | 0.5             | 120           | 300                          | 2                         | 10                          |                         | . TEMP                                      | Service L                       | Alarm               |              | . 0                        | 0    |
|                          |     | 71       | SCExvKiDelay                 | 10       | 1         | 90        | 1               | 0             | 0                            | 0                         | 0                           |                         | ·· SECONDS                                  | Service L                       | Setpoint            |              |                            |      |
|                          |     | 72       | SCExvStartup                 | 10       | 1         | 120       | 1               | 0             | 0                            | 0                         | 0                           | Active .                | SECONDS                                     | Service L                       | Setpoint            |              |                            |      |

Based on your selections will dictate the set points for compressor control. The subcooler set points are only displayed if a subcooler id is present.



IMPORTANT

NOTE: Once you have clicked on the boxes for your setup, be sure to click on 'Set Values to Default'. This will set the values to the default for 'Control Parameter, Heat Exchanger Type and the Control Method. Make note that clicking in the 'Target Modifier' require that some set points must be active.

# **29.9. Compressor EXV Results**

|   | EXV Control Setpoints |               |       |     |     |                 |               |                              |                           |                             |                         |      |                                             |                                 |                     |          |      |    |                                       |                                   |
|---|-----------------------|---------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|------|---------------------------------------------|---------------------------------|---------------------|----------|------|----|---------------------------------------|-----------------------------------|
|   | #                     | Name          | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | ;    | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments |      |    | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) |
| Þ | 9                     | SucSprHtT arg | 12    | 8   | 20  | 0.1             | 6             | 9                            | 0                         | 0                           | Active                  |      | TEMP                                        | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 10                    | Ki-IntegMult  | 0.15  | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                  |      | DEC2NOCH                                    | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 11                    | EXV LD/UNLD%  | 0     | 0   | 0.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Non-Active              |      | HUMD or %                                   | Service L                       | Time                |          | •••• |    |                                       |                                   |
|   | 12                    | Kp-PropMult   | 0.3   | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                  |      | DEC2NOCH                                    | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 13                    | Kd-DerivMult  | 0.2   | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                  | •••• | DEC2NOCH                                    | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 14                    | Ka-AcciMult   | 0.1   | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                  |      | DEC2NOCH                                    | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 15                    | ExvMinValve%  | 5     | 2   | 25  | 1               | 2             | 10                           | 0                         | 0                           | Active                  |      | HUMD or %                                   | Service L                       | Setpoint            |          | •••• |    |                                       |                                   |
|   | 16                    | ExvMaxValve%  | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                  | •••• | HUMD or %                                   | Service L                       | Target              |          | •••• |    |                                       |                                   |
|   | 17                    | LO SUPERHEAT  | 3.5   | 2   | 4   | 0.1             | 120           | 180                          | 2                         | 10                          | Active                  |      | TEMP                                        | Service L                       | Lockout             |          | •••• | 15 | 300                                   | 60                                |
|   | 18                    | LOW PSI DELY  | 1     | 1   | 30  | 1               | 3             | 60                           | 0                         | 0                           | Non-Active              |      | SECONDS                                     | Service L                       | Time                |          | •••• |    |                                       |                                   |
|   | 19                    | ExvKiDelay    | 15    | 1   | 120 | 1               | 0             | 0                            | 0                         | 0                           | Active                  |      | SECONDS                                     | Service L                       | Setpoint            |          | •••• |    |                                       |                                   |
|   | 20                    | ExvStartup    | 10    | 5   | 45  | 1               | 5             | 10                           | 0                         | 0                           | Active                  |      | SECONDS                                     | Service L                       | Time                |          |      |    |                                       |                                   |

- Control on 'Suction Superheat'
- Evaporator Type 'Plate HX'
- Control Method 'PID'
- MCS Default 'Selected'
- Degrees F or C are automatic

# 29.10. Set Point Descriptions (PID)

# Set points Available in MCS release 17.26-B and later

| SP # | Name                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9    | SPRHT TARGET<br>or<br>LEVEL TARGET      | <ul> <li>If EXV control is based upon superheat, this is the Superheat target that the Magnum will control from.</li> <li>If EXV control is based upon refrigerant level, this is the refrigerant level target that the Magnum will control from.</li> <li>'Low Zone' if nonzero then develop control super heat based upon the lowest superheat of any compressor that is on with in this suction group else use the superheat of this compressor.</li> <li>'Time (sec)' field: Seconds between samples used for calculating the Superheat Rate of Change.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | STAGE 7 CUT IN<br>(Cut In/Out Control)  | Stage 7 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10   | SPRHT ZONE +-                           | The value in this setpoint is added and subtracted to setpoint #9 to determine the upper<br>and lower limits of the control zone respectively. Refer to section on EXV control.<br>'Time (sec)' field: If non-zero, skip ROC adjustment logic in the control zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Ki-IntegMult                            | <b>EXV PID Integral</b> - Offset in Superheat= Current Superheat minus Target Superheat (setpoint #9 value field) Value is the Fast Multiplier for Kp adjustments, setback is the slow multiplier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | STAGE 8 CUT IN<br>(Cut In/Out Control)  | Stage 8 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12   | EXV FINE ADJ                            | The adjustment is made when in the 1st zone above or below the control zone. Refer to section on EXV control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Kp-PropMult                             | <b>EXV PID Proportional</b> - Change in Superheat = Current Superheat minus last Superheat from 1 second ago (Rate of Change). Value is the Fast Multiplier for Kp adjustments, setback is the slow multiplier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13   | EXV COURSE                              | If a course adjustment to the EXV when in the 2nd zone above or below the control zone.<br>If the type is TIME and the time (SEC) field is greater than 1 and less than 7 then multiple the value field by the time field else multiple by 2 for adjustment amount.<br>If a course adjustment to the EXV when in the 3rd zone above or below the control zone.<br>Multiple value by the by 2 for adjustment amount.<br>If a course adjustment to the EXV when above or below the 3nd zone the control zone.<br>The value is the adjustment amount.<br>Refer to section on EXV control. If a course adjustment to the EXV when in the 3rd zone<br>above or below the control zone. Multiple value by the by 2 for adjustment amount.<br>If a course adjustment to the EXV when above or below the SNV when in the 3rd zone<br>above or below the control zone. Multiple value by the by 2 for adjustment amount.<br>If a course adjustment to the EXV when above or below the 3rd zone the control zone.<br>The value is the adjustment amount. |
|      | Kd-DerrMult                             | <b>EXV PID Derivative</b> - Velocity of Superheat = Current Superheat minus the Superheat from x seconds ago (setpoint #9 time seconds value). Value is the Fast Multiplier for Kp adjustments, setback is the slow multiplier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14   | EXV LOAD DIV                            | The EXV slide adjustment can be fined tuned by dividing by the value of this set point.<br>Note the value of this set point is used regardless if the its is active or not.<br>Refer to section on EXV control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Ka-AccMult                              | <b>EXV PID Acceleration</b> - Change in Velocity = Current Kd minus the Kd from x seconds ago (setpoint #9 time seconds value). Value is the Fast Multiplier for Kp adjustments, setback is the slow multiplier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | STAGE 12 CUT IN<br>(Cut In/Out Control) | Stage 12 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 15 | ExvMinValve%                            | This is the minimum valve position allowed when modulating the expansion valve.<br>This value should be set so when hot gas is applied the valve opening is adequate.<br>Note the value of this set point is used regardless if it is active or not.<br>Refer to section on EXV control. Note the value of this set point is used regardless if it is<br>active or not.<br>Refer to section on EXV control. Note the value of this set point is used regardless if it is<br>active or not.<br>Refer to section on EXV control. Note the value of this set point is used regardless if it is<br>active or not.<br>Refer to section on EXV control. |
|----|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | STAGE 13 CUT IN<br>(Cut In/Out Control) | Stage 13 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 | ExvMaxValve%                            | This is the maximum position allowed when modulating the expansion valve to maintain<br>the superheat target. This value should be the valve % opening at full capacity plus a 10<br>to 15 % margin.<br>Note the value of this set point is used regardless if the its is active or not.<br>Refer to section on EXV control.                                                                                                                                                                                                                                                                                                                      |
|    | STAGE 14 CUT IN<br>(Cut In/Out Control) | Stage 14 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 | LoSucSuperHt                            | If super heat is less or equal to this value and the control slope is less that the roc for zone 3 make a slide adjustment of 3 times the value of set point #13.<br>If the calculated superheat remains below this value for the time specified in the Time (SEC) cell, the Magnum will generate a LOW SUPERHEAT alarm.<br>Refer to section on EXV control.                                                                                                                                                                                                                                                                                      |
|    | STAGE 15 CUT IN<br>(Cut In/Out Control) | Stage 15 cut in, Setpoint value contains the voltage when this stage is turned on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19 | EXV DELAY                               | Delay in seconds between valve adjustments. Should not be less than 48. (When adjusting at 4x this will allow 12 seconds for the controller to process the results of the last action before making the next adjustment). Refer to section on EXV control.                                                                                                                                                                                                                                                                                                                                                                                        |
|    | ExvKiDelay                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 | ExvStartup                              | This is the time in seconds to hold the valve at the start % setpoint when the compressor starts. Since the superheat calculation is not valid when the compressor is not running the EXV logic sets the valve to a given position for a set time to allow the system to develop a valid superheat.<br>'Time (sec)' field: If zero, then there is no delay when a compressor is ready to start. If non-zero, this is the time delay in which the EXV valve is allowed to open before the compressor starts.<br>Refer to section on EXV control.                                                                                                   |

# **29.11. PID Example Setpoint Defaults**

Default Celsius values for Suction Superheat with DX Chiller Barrel.

| #  | SETPOINT     | VALUE | TIME  | SEC<br>Ignore | WINDOW<br>EXT | SAFETY<br>EXT | HI<br>ZONE | LOW<br>ZONE | SETBACK | ТҮРЕ     |
|----|--------------|-------|-------|---------------|---------------|---------------|------------|-------------|---------|----------|
| 9  | SucSprHtTarg | 6.5C  | 6 S   | -             | -             | -             | 3.0C       | 2.7C        | 0.0C    | TARGET   |
| 10 | Ki-IntegMult | 0.20  | 0 S   | -             | -             | -             | 2.20       | -2.20       | 0.10    | TARGET   |
| 12 | Kp-PropMult  | 0.45  | 0 S   | -             | -             | -             | 0.00       | 0.00        | 0.20    | TARGET   |
| 13 | Kd-DerrMult  | 0.15  | 0 S   | -             | -             | -             | 0.20       | -0.20       | 0.17    | TARGET   |
| 14 | Ka-AccMult   | .10   | 0 S   | -             | -             | -             | 0.00       | 0.00        | 0.00    | TARGET   |
| 15 | ExvMinValve% | 5.0%  | -     | -             | -             | -             | -          | -           | -       | SETPOINT |
| 16 | ExvMaxValve% | 100   | 0 S   | -             | -             | -             | 0.0%       | 0.0%        | 15.0%   | TARGET   |
| 17 | LO SUPERHEAT | 1.6F  | 120 S | 15            | 300           | 60            | -          | -           | -       | LOCKOUT  |
| 19 | ExvKiDelay   | 15s   | -     | -             | -             | -             | -          | -           | -       | SETPOINT |
| 20 | ExvStartup   | 10s   | 5 S   | -             | -             | -             | -          | -           | -       | TIME     |

| #  | SETPOINT     | VALUE | TIME  | SEC<br>Ignore | WINDOW<br>EXT | SAFETY<br>EXT | HI<br>ZONE | LOW<br>ZONE | SET-<br>BACK | ТҮРЕ     |
|----|--------------|-------|-------|---------------|---------------|---------------|------------|-------------|--------------|----------|
| 9  | SucSprHtTarg | 12.0F | 6 S   | -             | -             | -             | 4.0F       | 3.5F        | 0.0F         | TARGET   |
| 10 | Ki-IntegMult | 0.15  | 0 S   | -             | -             | -             | 2.20       | -2.20       | 0.10         | TARGET   |
| 12 | Kp-PropMult  | 0.30  | 0 S   | -             | -             | -             | 0.00       | 0.00        | 0.20         | TARGET   |
| 13 | Kd-DerrMult  | 0.20  | 0 S   | -             | -             | -             | 0.20       | -0.20       | 0.17         | TARGET   |
| 14 | Ka-AccMult   | 0.10  | 0 S   | -             | -             | -             | 0.00       | 0.00        | 0.00         | TARGET   |
| 15 | ExvMinValve% | 5.0%  | -     | -             | -             | -             | -          | -           | -            | SETPOINT |
| 16 | ExvMaxValve% | 100   | 0 S   | -             | -             | -             | 0.0%       | 0.0%        | 15.0%        | TARGET   |
| 17 | LO SUPERHEAT | 3.5F  | 120 S | 15            | 300           | 60            | -          | -           | -            | LOCKOUT  |
| 19 | ExvKiDelay   | 15s   | -     | -             | -             | -             | -          | -           | -            | SETPOINT |
| 20 | ExvStartup   | 10s   | 5 S   | -             | -             | -             | -          | -           | -            | TIME     |

Below setpoints are the default **Fahrenheit** values for Suction Superheat with DX Chiller Barrel.

# 29.11.1 Subcooler EXV Results

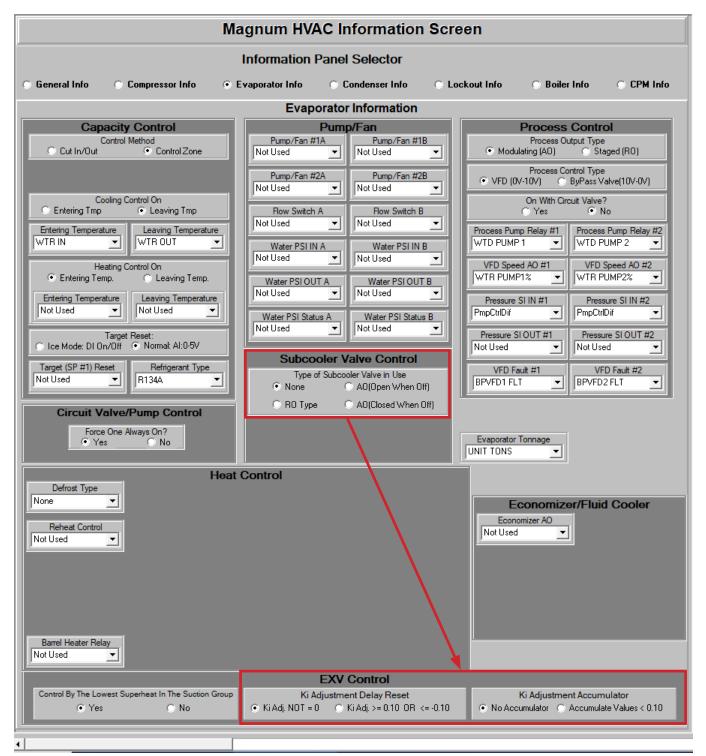
- If you have selected PID and have a subcooler this will use set points 65 through 72. If you setup 'Subcooler EXV & Subcooler Suction PSI' MCS-Config will automatically complete set points 65 through 72 with MCS standard defaults.
- If this is an existing config and you are converting to PID set points 253 through 255 will be spared out. (HVAC only)

| #  | Name         | Value | Min | Max | Adjust<br>Value |     | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Ext. Safety | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Setback | 01 |
|----|--------------|-------|-----|-----|-----------------|-----|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|-------------|-----------------------------------|--------------|-------------|---------|----|
| 65 | SCExvTarget  | 19    | 12  | 22  | 0.5             | 6   | 12                           | 0                         | 0                           | Active                  | TEMP                                        | Service L                       | Target              |          |                            |             |                                   | 4            | 3.5         | 0       |    |
| 66 | SCExvKIntegr | 0.25  | 0   | 3   | 0.01            | 0   | 0                            | 0                         | 0                           | Active                  | DEC2NOCH                                    | Service L                       | Target              |          |                            |             |                                   | 2            | -1          | 0.2     |    |
| 67 | SCEXvKProp   | 0.35  | 0   | 3   | 0.01            | 0   | 0                            | 0                         | 0                           | Active                  | DEC2NOCH                                    | Service L                       | Target              |          |                            |             |                                   | 0            | 0           | 0.3     |    |
| 68 | SCExvKDeriv  | 0.25  | 0   | 3   | 0.01            | 0   | 0                            | 0                         | 0                           | Active                  | DEC2NOCH                                    | Service L                       | Target              |          |                            |             |                                   | 0.5          | -0.5        | 0.2     |    |
| 69 | SCExvKAccel  | 0.1   | 0   | 3   | 0.01            | 0   | 0                            | 0                         | 0                           | Active                  | DEC2NOCH                                    | Service L                       | Target              |          |                            |             |                                   | 0            | 0           | 0       |    |
| 70 | SCLowSprht   | 5     | 3   | 8   | 0.5             | 120 | 300                          | 2                         | 10                          | Active                  | TEMP                                        | Service L                       | Alarm               |          | 0                          | 0           | 0                                 |              |             |         |    |
| 71 | SCExvKiDelay | 10    | 1   | 90  | 1               | 0   | 0                            | 0                         | 0                           | Active                  | SECONDS                                     | Service L                       | Setpoint            |          |                            |             |                                   |              |             |         |    |
| 72 | SCExvStartup | 10    | 1   | 120 | 1               | 0   | 0                            | 0                         | 0                           | Active                  | SECONDS                                     | Service L                       | Setpoint            |          |                            |             |                                   |              |             |         |    |

- Set Points if PID is selected & you have a Sub Cooler
- Set Points 65 thru 72 are set up
- Degrees F or C are automatic

| 65 | EXV ZONE1    | Temperature differential used to build the EXV Zone 1 both plus and minus.                                                                                                                                                                                                                                      |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | SCExvTarget  | SC SUPERHEAT TARGET - SC SUPERHEAT AVERAGE THIS # SECONDS -<br>Setup as Target                                                                                                                                                                                                                                  |
| 66 | EXV ZONE2    | Temperature differential that is used to build the EXV Zone 2 both plus and minus.<br>Temperatures above this zone are considered in zone 3.                                                                                                                                                                    |
|    | SCExvKIntegr | SC SUPERHEAT CONTROL ZONE - SC MPLY Ki) FOR VALVE ADJ WHEN IN FAST ZONE- <u>Setup as Target</u>                                                                                                                                                                                                                 |
| 67 |              | The EXV control logic will compare the value of this Setpoint to the temperature rate<br>of change to determine the valve adjustment when the temperature is within the EXV<br>control zone.<br>'Safety Down Time (MIN)' field: The minimum time delay between EXV adjustments<br>when in the EXV control zone. |
|    | SCEXvKProp   | SC SUPERHEAT MULTIPLIER (Kp) -SC RATE OF CHG MULTIPLIER - Setup as Target                                                                                                                                                                                                                                       |

| 68 | EXV ROC ZONE1 | The EXV control logic will compare the value of this Setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 1. 'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 1. If this Setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds.                                                                                                           |
|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | SCExvKDeriv   | SC ADJUST LIMIT IN FAST ZONE (Kd) Velocity of Superheat - SC OUTSIDE FAST ZONE ADJ LIMIT                                                                                                                                                                                                                                                                                                                                                                                                            |
| 69 | EXV ROC ZONE2 | The EXV control logic will compare the value of this Setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 2. 'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 2. If this Setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds.                                                                                                           |
|    | SCExvKAccel   | Setup as Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70 | EXV ROC ZONE3 | The EXV control logic will compare the value of this Setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 3. 'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 3. If this Setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds.                                                                                                           |
|    | SCLowSprht    | SC LOW SUPERHEAT SAFETY - SC LOW SH TIME TO SAFETY - Setup as Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 71 | EXV TOO FAST  | When the superheat is with the control zone, the EXV control logic will compare the value of this Setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within the zone and rising too fast.<br>'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments if the rate of change is too fast when in EXV control zones 1 or 2. If this Setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds. |
|    | SCExvKiDelay  | SC SECONDS DELAY BETWEEN ADJUSTMENTS (Ki) - Setup as Setpoint                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 72 | EXV CHANGING  | When the superheat is with the control zone, the EXV control logic will compare the value of this Setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within the zone and rising.                                                                                                                                                                                                                                                                  |


# 29.12. EXV PID Ki Delay Timer and Ki Accumulator

Magnum firmware 17.63 and greater adds support for two new EXV PID Ki adjustment options.

#1 **Reset the Ki Delay Timer** – only reset the Ki delay when a 0.1 or greater or -0.1 or less adjustment occurs, vs resetting it when Ki is not equal to zero. This is the reset time when the Ki adjustment is enough to actual move the EXV 0.1% or more.

#2 **Ki Accumulator** – this keeps the second decimal point in the Ki adjustment and accumulator until an actual adjustment is made, adjust is greater 0.1 or less than -0.1.

Both of these change are designed to help Ki adjustments when very close to the target.



# 29.13. Logic to Determine which K Multipliers to Use

Calculations are done every second

# **29.13.1.1.** Switching to Fast K multipliers is based on:

# a. Distance from target

1. If current superheat is greater than (setpoint #9 value field plus setpoint #9 high zone field x 2)

| Setpoint        | Value |   | Hi Zone  |   | Total |  |
|-----------------|-------|---|----------|---|-------|--|
| #9 SucSprHtTarg | 12.0F | + | 4.0F x 2 | = | 20    |  |

# **EXV PID** algorithm will use the <u>fast multipliers</u> (Setpoint Value Field)

## 2. If current superheat value is less than (setpoint #9 value field minus setpoint #9 high zone field)

| Setpoint        | Current Superheat<br>Value | HI Zone | Total |
|-----------------|----------------------------|---------|-------|
| #9 SucSprHtTarg | 12.0F -                    | 4.0F =  | 8     |

# **EXV PID** algorithm will use the <u>fast multipliers</u> (Setpoint Value Field)

| #         | SetPoints    | Value | Time | SEC Ig | windo  | safety | HI zone | LOW z | Setback |
|-----------|--------------|-------|------|--------|--------|--------|---------|-------|---------|
| 9         | SucSprHtTarg | 12.0F | 6 S  |        |        |        | 4.0F    | 3.5F  | 0.0F    |
| <b>10</b> | Ki-IntegMult | 0.10  | 0 S  |        |        |        | 2.20    | -2.20 | 0.10    |
| 12        | Kp-PropMult  | 0.30  | 0 S  |        |        |        | 0.00    | 0.00  | 0.20    |
| 13        | Kd-DerrMult  | 0.17  | 0 S  |        |        |        | 0.20    | -0.20 | 0.17    |
| 14        | Ka-AccMult   | 0.10  | 0 S  |        |        |        | 0.00    | 0.00  | 0.00    |
|           |              |       | FA   | ST m   | nultip | liers  |         |       |         |

# 29.13.1.2. Switching to Slow K multipliers is based on:

# b. Distance from target

1. If current superheat is less than (setpoint #9 value field plus setpoint #9 low zone field) but above the fast multiplier switch of 8 (12 - 4)

| Setpoint        | Value |   | LOW Zone | ) | Total |
|-----------------|-------|---|----------|---|-------|
| #9 SucSprHtTarg | 12.0F | + | 3.5F     | = | 15.5F |

# **EXV PID** algorithm will use the <u>slow multipliers</u> (Setback Value Field)

2. If current superheat is more than (setpoint #9 value field minus setpoint #9 low zone field) and below the fast multiplier switch of 20 (12 + 4 x 2)

| Setpoint        | Value |   | LOW Zone |   | Total |
|-----------------|-------|---|----------|---|-------|
| #9 SucSprHtTarg | 12.0F | - | 3.5F     | = | 8.5   |

# **EXV PID** algorithm will use the <u>slow multipliers</u> (Setback Value Field)

| #         | SetPoints    | Value | Time | SEC Ig | windo | safety | HI zone | LOW z | Setback |
|-----------|--------------|-------|------|--------|-------|--------|---------|-------|---------|
| 9         | SucSprHtTarg | 12.0F | 6 S  |        |       |        | 4.0F    | 3.5F  | 0.0F    |
| <b>10</b> | Ki-IntegMult | 0.10  | 0 S  |        |       |        | 2.20    | -2.20 | 0.10    |
| 12        | Kp-PropMult  | 0.30  | 0 S  |        |       |        | 0.00    | 0.00  | 0.20    |
| 13        | Kd-DerrMult  | 0.17  | 0 S  |        |       |        | 0.20    | -0.20 | 0.17    |
| 14        | Ka-AccMult   | 0.10  | 0 S  |        |       |        | 0.00    | 0.00  | 0.00    |
|           |              |       |      |        |       |        |         |       | 1       |

**SLOW** multipliers

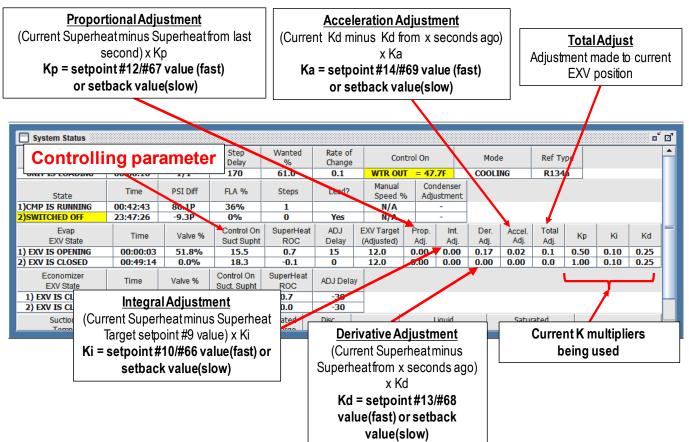
2.

# 29.13.1 Rate of Change\_- Moving too Fast

1. If current superheat ROC is greater than setpoint #13 (Kd) high zone and current superheat is above target

| Curre     | ent S     | Superheat RO     | С           | Setpo                              | oint #13    | 3 High 2   | Zone      | Cu        | rrent S        | uperhe        | eat        |
|-----------|-----------|------------------|-------------|------------------------------------|-------------|------------|-----------|-----------|----------------|---------------|------------|
|           |           | 0.7              |             |                                    | .2          | 0          |           | 16F       |                |               |            |
| EXV       | PID       | algorithm v      | vill use    | the <u>f</u>                       | ast mi      | ıltiplie   | ers (Se   | tpoin     | t Valu         | e Field       | d)         |
| . If curi | rent s    | superheat ROC is | greater tha | <u>in</u> setpo                    | oint #13 (M | (d) low zo | one and o | current s | uperheat       | is below      | target     |
| Currer    | nt S      | uperheat ROC     | ;           | Setpo                              | oint #13    | B Low Z    | one       | Cι        | irrent S<br>va | Superh<br>lue | eat        |
|           |           | -0.3             |             |                                    | -0.2        | 20         |           |           | 8              | 3             |            |
| EXV I     | PID       | algorithm w      | vill use    | e the <u>fast multipliers</u> (Set |             |            |           |           | : Value        | e Field       | <b>i</b> ) |
|           | #         | SetPoints        | Value       | Time                               | SEC Ig      | windo      | safety    | HI zone   | LOW z          | Setback       |            |
|           | 9         | SucSprHtTarg     | 12.0F       | 6 S                                |             |            |           | 4.0F      | 3.5F           | 0.0F          |            |
|           | <b>10</b> | Ki-IntegMult     | 0.10        | 0 S                                |             |            |           | 2.20      | -2.20          | 0.10          |            |
|           | 12        | Kp-PropMult      | 0.30        | 0 S                                |             |            |           | 0.00      | 0.00           | 0.20          |            |
|           | 13        | Kd-DerrMult      | 0.17        | 0 S                                |             |            |           | 0.20      | -0.20          | 0.17          |            |
|           | 14        | Ka-AccMult       | 0.10        | 0 S                                |             |            |           | 0.00      | 0.00           | 0.00          |            |
|           |           |                  |             | - FA                               | \ST m       | ultip      | liers     |           |                |               |            |

# 29.13.2 Rate of Change - Moving Slow Enough

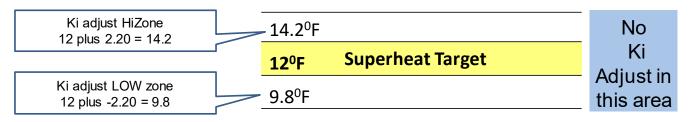

If current superheat ROC is less than setpoint #13 (Kd) high zone and current superheat is above target

| Current Superheat ROC | Setpoint #13 High Zone             | Current Superheat |
|-----------------------|------------------------------------|-------------------|
| 0.1                   | 0.20                               | 15F               |
| EXV PID algorithm     | will use <u>slow multipliers</u> ( | (Setback Field)   |

If current superheat ROC is less than setpoint #13 (Kd) low zone and current superheat is below target

| Current Superheat ROC | Setpoint #13 Low Zone              | Current Superheat |
|-----------------------|------------------------------------|-------------------|
| -0.1                  | -0.20                              | 10                |
| EXV PID algorithm v   | will use <u>slow multipliers</u> ( | Setback Field)    |

| #  | SetPoints    | Value | Time | SEC Ig | windo | safety | HI zone | LOW z | Setback |
|----|--------------|-------|------|--------|-------|--------|---------|-------|---------|
| 9  | SucSprHtTarg | 12.0F | 6 S  |        |       |        | 4.0F    | 3.5F  | 0.0F    |
| 10 | Ki-IntegMult | 0.10  | 0 S  |        |       |        | 2.20    | -2.20 | 0.10    |
| 12 | Kp-PropMult  | 0.30  | 0 S  |        |       |        | 0.00    | 0.00  | 0.20    |
| 13 | Kd-DerrMult  | 0.17  | 0 S  |        |       |        | 0.20    | -0.20 | 0.17    |
| 14 | Ka-AccMult   | 0.10  | 0 S  |        |       |        | 0.00    | 0.00  | 0.00    |
|    |              |       |      |        |       |        |         |       | 1       |
|    |              |       |      |        |       |        | SI O    | W m   | ultipl  |




# 29.14. MCS-Connect Evaporator EXV PID Status

# 29.15. Allowing an Adjustments to the EXV Valve

(When Ki & Kd are in opposite, we are going in the right direction)

- 1. When the Proportional adjust, Integral adjust, Derivative adjust and Acceleration all add up to be ≥ to .1 or -.1, the adjustment is made based on that number.
- 2. The Proportional adjust, Derivative adjust and Acceleration all run every second.
- 3. The Integral adjust uses setpoint #19 (ExvKiDelay) as a delay before posting a value as long as;
  - a. If the current Integral adjust (Ki) is > 0 and the current superheat > the current target plus setpoint #10 high zone field.
  - b. If the current Integral adjust (Ki) is < 0 and the current superheat < the current target plus setpoint #10 low zone.



| Ē  | <u> </u> | Setpoints    |       |      |        |       |        |         |       |         |         |         |       |        |
|----|----------|--------------|-------|------|--------|-------|--------|---------|-------|---------|---------|---------|-------|--------|
|    | #        | SetPoints    | Value | Time | SEC Ig | windo | safety | HI zone | LOW z | Setback | MIN VFD | MAX VFD | MAX V | Туре   |
| 9  |          | SucSprHtTarg | 12.0F | 6 S  |        |       |        | 4.0F    | 3.5F  | 0.0F    |         |         |       | TARGET |
| 10 | D        | Ki-IntegMult | 0.10  | 0 5  |        |       |        | 2.20    | -2.20 | 0.10    |         |         |       | TARGET |

# Chapter - 30. EXV Level Control using PID

- The following versions of Firmware are needed to setup EXV Level Control:
- MCS-CONFIG 17.17.00U or later
- MCS-CONNECT 17.003.11 or later
- MCS-MAGNUM Firmware 17.16C or later

# **30.1. Setting up EXV Level Control**

Setup Analog Outputs to control electronic expansion valves.

|   | Analog Output Information Screen |       |              |        |          |                     |                 |  |  |  |  |  |
|---|----------------------------------|-------|--------------|--------|----------|---------------------|-----------------|--|--|--|--|--|
|   | Point<br>Number                  | Name  | Control Type | Invert | Comments | Modbus Display Type | Feedback Sensor |  |  |  |  |  |
| ► | M-1                              | EEV-1 | Standard     | NO     |          | Spare               | Not Used        |  |  |  |  |  |
|   | M-2                              | EEV-2 | Standard     | NO     |          | Spare               | Not Used        |  |  |  |  |  |
|   |                                  |       |              |        |          |                     |                 |  |  |  |  |  |

Setup INPUTS to read evaporator or condenser level.

| Sensor Input Information Screen     |              |        |                                                |                                       |                                      |                                             |                                        |                  |
|-------------------------------------|--------------|--------|------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|------------------|
| Point Name (1 to 10<br>Number char) | Display Type | Offset | Manual Value or<br>NC/NO (select to<br>change) | Display Text<br>(select to<br>change) | Temp./GPM<br>/CFM / Pwr<br>Factor SI | Humd./PSI/<br>Temp. Diff./<br>Enthal. Diff. | Auto/Manual<br>(Click here for<br>all) | Circuit<br>Index |
| 1-12 REFLVL1                        | User Defined | 0      | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |
| 1-13 REFLVL2                        | User Defined | 0      | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |

# 30.1.1 Setting up EXV Level Control – User Defined

Selecting 'User Defined' type

|   | Sensor Input Information Screen     |                         |       |                                                |                                       |                                      |                                             |                                        |                  |  |  |  |
|---|-------------------------------------|-------------------------|-------|------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|------------------|--|--|--|
|   | Point Name (1 to 10<br>Number char) | Display Type            | Onset | Manual Value or<br>NC/NO (select to<br>change) | Display Text<br>(select to<br>change) | Temp./GPM<br>/CFM / Pwr<br>Factor SI | Humd./PSI/<br>Temp. Diff./<br>Enthal. Diff. | Auto/Manual<br>(Click here for<br>all) | Circuit<br>Index |  |  |  |
| ► | 1-12 REFLVL1                        | User Defined 💌          | 0     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   | 1-11 REFLVL2                        | User Defined            | 0     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   | 1-14 BARLTMP1                       | User Logic              | 0     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   | 1-15 BARLTMP2                       | VirtualVane%<br>VOLT5DC | -     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   | 1-16 SPARE                          | 0-600 VAC               | 0     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   | 2-1 SPARE2-1                        | 600VAC4                 | 0     | 0                                              | Not Used                              | Not Used                             | Not Used                                    | Auto                                   | Not Used         |  |  |  |
|   |                                     | NCCT100                 | î     |                                                |                                       |                                      |                                             |                                        |                  |  |  |  |

Under the Display Type, select User Defined

Screen below will open:

| 🖻 SI Calculation W | /izard       | -     | _      |       | × |
|--------------------|--------------|-------|--------|-------|---|
| SI                 | Calculatio   | n Wi  | zaro   | t     |   |
| Select Di          | splay Type ( | Do th | nis Fl | RST)  |   |
| н                  | UMD or %     |       | •      | ]     |   |
|                    | Voltage      |       |        | Value |   |
| Point#1            | 1.2          | =     | 0      | %     |   |
| Point #2           | 3.7          | =     | 1(     | 00%   |   |
| Calc               | ulate        |       | Ca     | ncel  |   |

- 1. Setting up the Level Sensor
- 2. Wire the Level Sensor to the designated input.
- 3. If available, have the Level Sensor loose and manually move the float or submerge in a bucket of liquid to 100% (standpipe full of refrigerant).
- 4. Record the voltage input, this would be point #2 on the SI Calculation Wizard

(Ex. Voltage = 3.7 Value = 100%)

- 5. Move the float to 0% (no refrigerant in the standpipe=empty)
- 6. Record the voltage input. This would be point #1 on the SI calculation wizard

(Ex. Voltage = 1.2 Value = 0%)

NOTE: If Level Sensor is a 4-20ma output, where at 4ma = 0% level and at 20ma = 100% level, you would put the designated input jumper on digital and the SI calculation wizard would be Setup as:

Point #1 .882 vdc = 0% Point #2 4.41 vdc = 100%

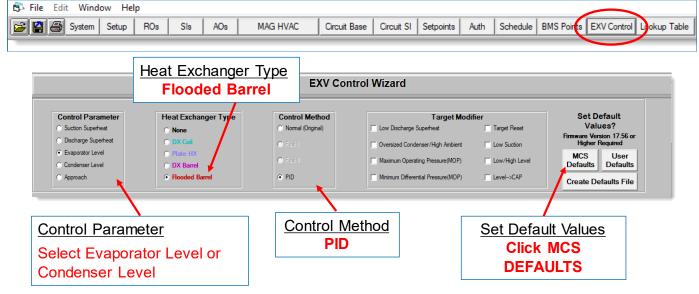
See APP066- 4-20mA Sensor Connection to MCS-Magnum

# 30.1.2 Circuit Base Setup

■ Point to the EXV outputs in the Circuit Base screen.

|                                             |                              |                                                 |                           |                           |            | MAGNU                                    | M Circuit                  | Base Scre           | en                    |              |                     |                     |                         |                      |                   |                                           |
|---------------------------------------------|------------------------------|-------------------------------------------------|---------------------------|---------------------------|------------|------------------------------------------|----------------------------|---------------------|-----------------------|--------------|---------------------|---------------------|-------------------------|----------------------|-------------------|-------------------------------------------|
|                                             |                              |                                                 |                           |                           | Ir         | formation that relate                    | es to compressa            | ors on the circuit  |                       |              |                     |                     |                         |                      |                   |                                           |
| Circuit# # of<br>(reset Comp<br>button) ROs | Starting<br>Compressor<br>RO | Part Sta<br>Winding Unlo<br>Bypa                | ad Unloader               | Type of<br>LLS            | 2nd<br>LLS |                                          | cono Unioac<br>ontrol Stag |                     | HGB                   | HG<br>Reheat | Liquid<br>Injection | 0il<br>Equalization | Mod<br>Motor<br>Control | Low Disc<br>SuperHea | t F               | ernal Oil 🔺<br><sup>9</sup> ump<br>ontrol |
| 1 3                                         | COMP-1                       | No No                                           | No .                      | - EXV only                | No         | No Slie                                  | de % 0                     | Unload              | None                  | No           | No                  | No                  | No                      | No                   | No                |                                           |
| 2 3                                         | COMP-2                       | No No                                           | No .                      | . EXV only                | No         | No Slie                                  | ie % 0                     | Unloade             | None                  | No           | No                  | No                  | No                      | No                   | No                |                                           |
| 3 0                                         | Not Used                     | No No                                           | No .                      | None                      | No         | No Slie                                  | ie 🎗 0                     | Unloade             | None                  | No           | No                  | No                  | No                      | No                   | No                |                                           |
| 4 0                                         | Not Used                     | No 📶 No                                         | No .                      | None                      | No         | No Slie                                  | de 🎗 0                     | Unloade             | None                  | No           | No                  | No                  | No                      | No                   | No                |                                           |
| 5 O                                         |                              | No 📶 No                                         |                           |                           | No         |                                          | de % 0                     | Unloade             | None                  |              | No                  | No                  | No                      |                      | No                |                                           |
| 6 O                                         |                              | No 📶 No                                         |                           |                           | No         |                                          | de % 0                     | Unloade             | None                  |              | No                  | No                  | No                      |                      | No                |                                           |
| 7 0                                         |                              | No 📶 No                                         |                           |                           | No         |                                          | de 🎗 0                     | Unloade             | None                  |              | No                  | No                  | No                      |                      | No                |                                           |
| 8 0                                         |                              | No <mark> No</mark>                             |                           |                           | No         | No Slie                                  | le 🎗 0                     | Unload              | None                  |              | No                  | No                  | No                      | No                   | No                |                                           |
|                                             | Martina di                   | N. N.                                           | N-                        | N                         | N-         | u. – – – – – – – – – – – – – – – – – – – |                            | l Halanda           | N                     | N-           | 1 M -               | N                   | M-                      | N -                  | l M -             | ► F                                       |
| _                                           |                              |                                                 |                           |                           |            | Select Output ar                         | d Sensar Inputs            | s per circuit       |                       |              |                     |                     |                         |                      |                   |                                           |
| Circuit Alarm Re<br>#<br>(reset<br>button   | lay Comp Proof               | Compr<br>Speed(%) or<br>Modulate Hot<br>Gas Aft | Compressor<br>Speed Fault | Slide Closed<br>Indicator | Pump D     |                                          | Fow                        | Pump/Valve<br>Proof | Circuit<br>Pump/Valve | IGV Ope<br>% | n Rehea<br>Type     | t Reheat            | AO Re                   |                      | Amount<br>of RO's | Reh A<br>Fau                              |
| 1 Not Used                                  | Not Used                     | Not Used                                        | Not Used                  | Not Used                  | PUMPD      | W EEV-1                                  | WFS+/FT                    | Not Used            | Not Used              | Not Usec     | None                | Not Use             | d Not                   | Used O               |                   | Not Us                                    |
| 2 Not Used                                  | Not Used                     | Not Used                                        |                           | Not Used                  | PUMPD      |                                          | WFS+AFT                    | Not Used            | Not Used              | Not Usec     | None                | Not Use             |                         |                      |                   | Not Us                                    |
| 3 Not Used                                  | Not Used                     | Not Used                                        | Not Used                  | Not Used                  | Not Use    | heel to N                                | Not Leed                   | WATER IN            | Not Used              | Not User     | None                | Not User            | d Not                   | lleed N              |                   | Not IIs                                   |
|                                             |                              |                                                 |                           |                           |            |                                          |                            |                     |                       |              |                     |                     |                         |                      |                   |                                           |

Point to the Refrigerant Level inputs in the Circuit SI screen.


|    |                             |          |                |           | MAGNUM       | I Circuit S         | I Screen     |                        |               |                   | <b>^</b> |
|----|-----------------------------|----------|----------------|-----------|--------------|---------------------|--------------|------------------------|---------------|-------------------|----------|
| (n | rcuit<br>#<br>eset<br>itton |          | Pre Oil Filter | Oil Float | Leaving Temp | Refrigerant<br>Temp | Refrig Level | Nefrig. Leak<br>Sensor | Vane Position | Evap Suct<br>Temp | Eva      |
| 1  |                             | Not Used | Not Used       | OILLVL1   | Not Used     | BARLTMA1            | REFLVL1      | Not Used               | Not Used      | Not Used          | Not      |
| 2  |                             | Not Used | Not Used       | OILLVL2   | Not Used     | BARLTMP2            | REFLVL2      | Not Used               | Not Used      | Not Used          | Not      |
| 1  |                             | Mar Hand | Mark Hand      | Mark Hand | Mark Hand    | Mark Harand         |              | Cast Hand              | Max Hand      | Mark Hand         | AL       |

Make sure the Discharge Pressure and Discharge Temperature are pointing to correct sensors for the calculation of discharge superheat.

|                                  |                     | $\frown$              |                        | MAGNUM                   | Circuit S    | l Screen  |            |                    |             | <b>^</b> |
|----------------------------------|---------------------|-----------------------|------------------------|--------------------------|--------------|-----------|------------|--------------------|-------------|----------|
| Circuit<br>#<br>(reset<br>hutton | Suction<br>Pressure | Discharge<br>Pressure | Suction<br>Temperature | Discharge<br>Temperature | Oil Pressure | Oil Temp  | Motor Temp | Oil Flow<br>Switch | Liquid Temp | L<br>Pre |
| 1                                | SUCPRES1            | DISPRES1              | SUCTEMP1               | DISTEMP1                 | Aot Used     | WIND.TEMF | MP+0L1     | Not Used           | Not Used    | Not U    |
| 2                                | SUCPRES2            | DISPRES2              | SUCTEMP2               | DISTEMP2                 | Not Used     | WIND.TEMF | MP+0L2     | Not Used           | Not Used    | Not U    |
| 3                                | Notllead            | Not Head              | Not Llead              | hast llead               | Not Llead    | Not Llead | Not Head   | Not Llead          | Notllead    | Not II   |

# 30.1.3 Setup using EXV CONTROL WIZARD

Select the EXV Control button and set up for level control with the desired EXV control method.



IMPORTANT

|    |               |       |     |     |                 |               |                              |                           | Setp                        | oint Inf               | orn | mation So                                   | creen                           |                     |          |                            |             |    |              |             |         |
|----|---------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|------------------------|-----|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|-------------|----|--------------|-------------|---------|
| #  | Name          | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Activ |     | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Ext. Safety |    | High<br>Zone | Low<br>Zone | Setback |
| 9  | EvpLevelTarg  | 40    | 25  | 70  | 1               | 6             | 9                            | 0                         | 0                           | Active                 | H   | HUMD or %                                   | Service L                       | Target              |          | . —                        | _           | _  | 0.1          | 1           | 0       |
| 10 | Ki-IntegMult  | 0.13  | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                 | D   | DEC2NOCH                                    | Service L                       | Target              |          | . —                        | _           | _  | 1            | -1          | 0.1     |
| 11 | EXV LD/UNLD%  | 0     | 0   | 0.5 | 0.1             | 0             | 0                            | 0                         | 0                           | Non-Active             | H   | HUMD or %                                   | Service L                       | Time                |          |                            | —           | —  | —            | —           | —       |
| 12 | Kp-PropMult   | 0.15  | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                 | D   | DEC2NOCH                                    | Service Lo                      | Target              |          |                            | —           | —  | 0            | 0           | 0.2     |
| 13 | Kd-Deriv Mult | 0.03  | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                 | D   | DEC2NOCH                                    | Service Lo                      | Target              |          | . —                        |             |    | 0.6          | -0.6        | 0.05    |
| 14 | Ka-Accl Mult  | 0.05  | 0   | 3   | 0.01            | 0             | 0                            | 0                         | 0                           | Active                 | D   | DEC2NOCH                                    | Service Lo                      | Target              |          | . —                        |             |    | 0            | 0           | 0       |
| 15 | ExvMinValve%  | 5     | 2   | 25  | 1               | 2             | 10                           | 0                         | 0                           | Active                 | H   | HUMD or %                                   | Service Lo                      | Setpoint            |          |                            |             |    |              | _           | _       |
| 16 | ExvMaxValve%  | 100   | 50  | 100 | 1               | 0             | 0                            | 0                         | 0                           | Active                 | H   | HUMD or %                                   | Service Lo                      | Target              |          | . —                        | _           |    | 0            | 0           | 10      |
| 17 | LO Suc sprht  | 1     | -20 | 4   | 0.1             | 120           | 900                          | 2                         | 10                          | Non-Active             | T   | remp                                        | Service L                       | Lockout             |          | . 15                       | 300         | 60 | —            | —           | —       |
| 18 | LOW PSI DELY  | 1     | 1   | 30  | 1               | 3             | 60                           | 0                         | 0                           | Non-Active             | S   | SECONDS                                     | Service L                       | Time                |          | . —                        | —           | —  | —            | —           | —       |
| 19 | ExvKiDelay    | 90    | 1   | 120 | 1               | 0             | 0                            | 0                         | 0                           | Active                 | S   | SECONDS                                     | Service Lo                      | Setpoint            |          | . —                        | _           | —  | —            | —           | —       |
| 20 | ExvStartup    | 30    | 5   | 45  | 1               | 5             | 10                           | 0                         | 0                           | Active                 | S   | SECONDS                                     | Service L                       | Time                |          | . —                        |             |    |              | —           | _       |

The following setpoints will be setup:

- NOTE: If more than one circuit is available and you want to control two independent circuit target levels, make setpoint#9 'Non-Active' in the setpoint screen.
- Make the used FLA setpoints#171-190 a 'target' type and set the level target up in the setback field.

|   |     |            |       |     |     |                 |               |                              |                           | Setp                        | oint Info               | ormation S                                  | creen                           |                     |          |     |             |                                   |              |             | ×       |
|---|-----|------------|-------|-----|-----|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|-----|-------------|-----------------------------------|--------------|-------------|---------|
|   | #   | Name       | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments |     | Ext. Safety | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zony | Setback |
| Г | 171 | FLA COMP#1 | 292   | 200 | 300 | 1               | 1             | 1                            | 0                         | 0                           | Active                  | AMPS/CT                                     | Factory Le                      | Target              |          | —   |             |                                   | 0            | 0           | 42      |
| E | 172 | FLA COMP#2 | 292   | 200 | 300 | 1               | 1             | 1                            | 0                         | 0                           | Active                  | . AMPS/CT                                   | Factory Le                      | Target              |          | . — |             | —                                 | 0            | 0           | 34      |
| Ī | -   |            |       |     |     |                 |               |                              |                           |                             |                         |                                             |                                 |                     |          |     |             |                                   |              |             |         |

# 30.1.4 Low Discharge Superheat EXV Target Adjust Logic

■ Requires Firmware Version: MCS-MAGNUM Firmware - 17.61-D or later

Below are three enables for the low discharge EXV target adjustment:

- 7. Comp has been running for 5 minutes, or
- 8. Discharge temperature is greater than 130F (or 54.5C), or
- 9. EXV control is setup for PID Evap, PID Cond, Old Evap Level or Old Cond Level control.
  - Make setpoint #110 (LoDisSHExvAd) active if you want to dynamically change the EXV target based on Low Discharge Superheat.

|     |              |       |     |     |                 |               |                              |                         | Set            | point Info | rmation S                                   | creen                           |                     |          |                            |                                       |                                   |              |             |         |
|-----|--------------|-------|-----|-----|-----------------|---------------|------------------------------|-------------------------|----------------|------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|--------------|-------------|---------|
| #   | Name         | Value | Min | Max | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HR | Safety<br>Down | Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Setback |
| 109 | HiRefLevel   | 95    | 50  | 100 | 1               | 120           | 120                          | 2                       | 10             | Active     | HVMD or %                                   | Factory Le                      | Lockout             |          | . 600                      | 300                                   | 60                                |              | —           | _       |
| 110 | LoDisSHExvAd | 0.5   | 0.1 | 5   | 0.1             | 90            | 300                          | 0                       | 0              | Active     | HJMD or %                                   | Factory Le                      | Target              |          | . —                        | —                                     | —                                 | 45           | 10          | 30      |
| 111 | FREEZE       | 38    | 36  | 40  | 1               | 3             | 10                           | 0                       | 0              | Active     | TEMP                                        | Factory Le                      | Lockout             |          | . 0                        | 0                                     | 0                                 | —            | —           | _       |
| 110 | NO CTOD      | າດ    | 10  | 20  | 1               | E             | 2                            | <b>n</b>                | <b>n</b>       | N A-4:     | 1111MD %                                    | M 0-1                           | C-11                |          |                            |                                       |                                   |              |             |         |

# **30.1.4.1.** The Low Discharge Superheat logic:

- If Setpoint #110 (#164 for REFR) is setup as a "TARGET" type setpoint the following logic occurs (New Logic):
- 1. If discharge superheat <= setpoint #110 (#164) low zone value and the low discharge superheat adjusted amount is less than the max adjust limit setpoint #110 setback value and the Time (SEC) value has elapsed, then:
  - a. If Evap Level control, setpoint #110 (#164) value field is subtracted from the EXV Target and this value becomes the new EXV target. The value in the Time (SEC) field will count down again and

another adjustment will be made until the max adjust is reached (setpoint #110 setback value) or the discharge superheat goes above setpoint #110 (#164) low zone value.

- b. For Cond Level control method, setpoint #110 (#164) value field is added to the EXV Target and this value becomes the new EXV Target. The value in the Time (SEC) field will count down again and another adjustment will be made until the max adjust is reached (setpoint #110 setback value) or the discharge superheat goes above setpoint #110 (#164) low zone value.
- Else if discharge superheat >= setpoint #110 (#164) high zone value and the low discharge superheat adjusted amount is greater than 0 and the Time (SEC) value has elapsed, then:
  - a. If Evap Level control, setpoint #110 (#164) value field is added to the EXV Target and this value becomes the new EXV Target. The value in the Time (SEC) field will count down again and another adjustment will be made until the min adjust is reached (0) or the discharge superheat goes below setpoint #110 (#164) high zone value.

### NOTE: The EXV Target adjusted value will not go above the original setpoint Target value.

b. For Cond Level control method, setpoint #110 (#164) value field is subtracted from the EXV Target and this value becomes the new EXV Target. The value in the Time SEC) field will count down again and another adjustment will be made until the min adjust is reached (0) or the discharge superheat goes below setpoint #110 (#164) high zone value.

### NOTE: The EXV Target adjusted value will not go below the original setpoint Target value.

- Else If Setpoint #110 (#164) is not a "TARGET" type setpoint the following logic occurs (Old Logic):
- 2. If discharge superheat is < Low discharge superheat safety setpoint #84 value, then:
  - a. If Evap Level or Cond Level and not level target by compressor circuit, then set EXV target to setpoint #110 value.
  - b. Else If Evap Level or Cond Level and EXV target is by compressor circuit, then subtract setpoint #110 value from the current EXV target.

# Chapter - 31. Analog Output Control using PID

Required to have the software below or later version Config version 18.01T Connect version 18.31.15 Firmware HVAC 17.62R2

PID control will turn an analog output into a stand alone PID controlled output. This output will have a controlling sensor that modulates the AO to a maintain target. This logic will run all the time.

|   | Ana          | alo | og Output In | formation             | Sc | reen   |
|---|--------------|-----|--------------|-----------------------|----|--------|
|   | -            |     | Name         | Control Type          |    | Invert |
| ► | 4-4          |     | ExvTpCtrl1   | PID CTRL              | •  | NO     |
|   | • 4-4<br>5-1 |     | ExvTpCtrl2   | Standard              | ~  | NO     |
|   | 5-2          |     | ExvTpCtrl3   | PID CTRL              |    | NO     |
|   | 5-3          |     | SPARE5-3     | Linear CTRL<br>Modbus |    | NO     |
|   | 5-4          |     | SPARE5-4     | Digital Scroll        |    | NO     |
|   | 6-1          |     | SPARE6-1     | 2-10vdc               |    | NO     |
|   | 6-2          |     | SPARE6-2     | Linear/Modbus         | ~  | NO     |

| 🗅, PID CTRL AO User Logic                                            |                                                                 | - 🗆 X                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lf Relay-                                                            | ExvTpCtrl1<br>Fan1CmpsOf  is Off, then Output =                 | (0% to 100%)                                                                                                                                                                                                                                                                                                                                                                                                       |
| Else                                                                 |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Control Sensor       Point     Value       SI     ▼       SupplyTmp1 | Control Target<br>Point Value<br>▼ Setpoint Val ▼ AHU1TrgtTmp ▼ | Proportional (Kp)<br>(-327.68 to 327.67)<br>Mult. 0.1                                                                                                                                                                                                                                                                                                                                                              |
|                                                                      | mum Output Max Output<br>6 to 100%)<br>20 То 100<br>ок          | Integral (Ki)       (-327.68 to 327.67)       (0 to 3200)         Mult.       0.7       Delay       60         Derivative (Kd)       (-327.68 to 327.67)       (2 to 60)         Mult.       0.15       Interval       6         Adjustment Limits       6       6       6         Min       (-0.1 to -100.0)       Max       (0.1 to 100.0)         Adj       -5       Adj       5         Cancel       6       6 |

# NOTE

If AO is modulating the wrong direction, simply make all three multipliers negative values to reverse the direction the AO modulates and vice versa.

## If Relay-

If a relay is used and is OFF then associated AO will be set to the defined value and not modulate. If 'not used' the logic is ignored.

## **Control Sensor**

AO or SI point to be used as the controlling sensor for the AO.

## **Control Target**

SI, AO, or Setpoint used as the target the AO will try to maintain.

## AO

Min to Max value the AO can modulate between.

# Proportional(Kp)

Multiplier for Kp adjustments.

# Integral(Ki)

Multiplier and delay between Ki Adjustments

## Derivative(Kd)

Multiplier and time in seconds interval to calculate Kd.

## **Adjustment Limits**

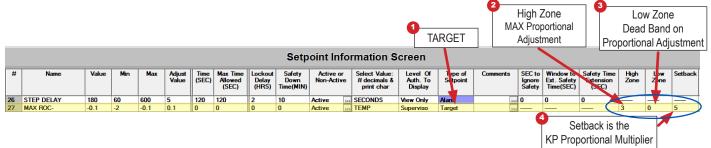
Min and Max adjustments allowed to the AO per adjustment, both negative and positive.

Under the Analog Outputs window in the MCS Connect software. You'll find an AO PID tab that will show all of the PID CONTROL AOs and all of the calculated adjustments being made to those Analog Outputs. Here you will be able to see all three adjustments being made to the PID. This will assist you in any fine tuning required for the given analog output.

|     |       | Outputs       |       |        |       |             |          |          | ס" נ       |
|-----|-------|---------------|-------|--------|-------|-------------|----------|----------|------------|
| Bas | sic / | Advanced AO F | DID   |        |       |             |          |          |            |
| -   |       | Analog        |       | Manual | Total | Proportiona | Integral | Integral | Derivative |
|     | AO #  | Outputs       | Value | Status | Adj.  | Adj.        | Delay    | Adj.     | Adj.       |
|     |       |               |       |        |       |             |          |          |            |
|     | 3-1   | SCR Heat1%    | 0.0%  | AUTO   | 0.0   | 0.00        | 36       | 0.00     | 0.00       |
|     | 3-2   | SCR Heat2%    | 0.0%  | AUTO   | 0.0   | 0.00        | 56       | 0.00     | 0.00       |
|     | 3-3   | SCR Heat3%    | 0.0%  | AUTO   | 0.0   | 0.00        | 24       | 0.00     | 0.00       |
|     | 4-4   | ExvTpCtrl1    | 33.6% | AUTO   | 0.0   | 0.00        | 36       | 0.00     | 0.00       |
|     | 5-1   | ExvTpCtrl2    | 25.3% | AUTO   | 0.0   | 0.00        | 56       | 0.00     | 0.00       |
|     | 5-2   | ExvTpCtrl3    | 20.0% | AUTO   | 0.0   | 0.00        | 24       | 0.00     | 0.00       |
|     |       |               |       |        |       |             |          |          |            |

# Chapter - 32. Capacity Control Logic Using PID

Requirment to use this new Capacity Control PID Logic: Config version 18.02I Connect version 18.39.15 Firmware HVAC 17.90A


The MCS-Magnum firmware always had Capacity Control Logic Integral Control, "I" in PID.

This new MCS-Magnum firmware adds **Proportional ("P") and Derivative ("D")** to capacity control logic to the adjust **"Wanted %"**.

The Proportional and Derivative adjustments are optional and enabled in the MCS-Magnum configuration file. Both the Proportional and Derivative adjustments to capacity control are made every second and adjust only the "Wanted %".

To enable Proportional capacity control logic, setup as follows:

- 1. Make Setpoint #27 "MAX ROC-" a TARGET type of setpoint.
- 2. High Zone field is the max proportional adjustment allowed each second to the "Wanted %"
- 3. Low Zone field is dead band on proportional adjustment. If proportional change(absolute difference from last control valve to current control valve) is less than or equal to the value in the low zone, the proportional adjustment to the wanted % is skipped, ie no proportional adjustment is made because the porportional change is small.
- 4. Setback is the Kp, the proportional multiplier.



Once the proportion logic is enable, the capacity control logic will calculated a proportional adjustment to make to the "Wanted %". The calculated adjustment is as follows:

**Proportional adjustment** = [(current controlling sensor value – controlling sensor value from 1 second ago) \* Setpoint #27 Setback value] + Accumulated Proportional adjustment remainder;

**Accumulated proportional adjustment remainder** = Proportional adjustment modulus 10 (This accumulates the hundredths value, 2nd decimal point, values x.x0)

**Proportional adjustment = Proportional adjustment** / 10 (This gets rid of the hundreths value, 2nd decimal place, "Wanted %" resolution is only 1 decimal place)

To enable Derivative capacity control logic, setup as follows:

5. Make Setpoint #28 "MAX ROC+" a TARGET type of setpoint.

|    |            |       |     |      |                 |               |                              |                           | Setp                        | oint Info               | ormation S                                  | creen                           |                     |          |                            |                                       |                                   |              |             |         |
|----|------------|-------|-----|------|-----------------|---------------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|--------------|-------------|---------|
| #  | Name       | Value | Min | Max  | Adjust<br>Value | Time<br>(SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Setback |
| 26 | STEP DELAY | 180   | 60  | 600  | 5               | 120           | 120                          | 2                         | 10                          | Active .                | . SECONDS                                   | View Only                       | Alarm               |          | 0                          | 0                                     | 0                                 |              | —           |         |
| 27 | MAX ROC-   | -0.1  | -2  | -0.1 | 0.1             | 0             | 0                            | 0                         | 0                           | Active .                | . TEMP                                      | Superviso                       | Target              |          | —                          |                                       |                                   | 3            | 0           | 5       |
| 28 | MAX ROC+   | 0.1   | 0.1 | 2    | 0.1             | 0             | 0                            | 0                         | 0                           | Active .                | . TEMP                                      | Superviso 🗲                     | Target              |          |                            |                                       |                                   | 0.5          | 0           | 0.5     |
|    |            |       |     |      |                 |               |                              |                           |                             | _                       |                                             |                                 | <b>`</b>            | _        |                            |                                       | · –                               | 6            | 67          | 8       |

- 6. High Zone field is the max Derivative adjustment allowed each second to the "Wanted %"
- 7. Low Zone field is dead band on Derivative adjustment. If absolute valve of Derivative(ROC) is less than or equal to the value in the low zone, the Derivative adjustment to the wanted % is skipped, ie no Derivative adjustment is made.
- 8. Setback is the Kd, the Derivative multiplier.

9. Change setpoint #29 value to maximum of 30.

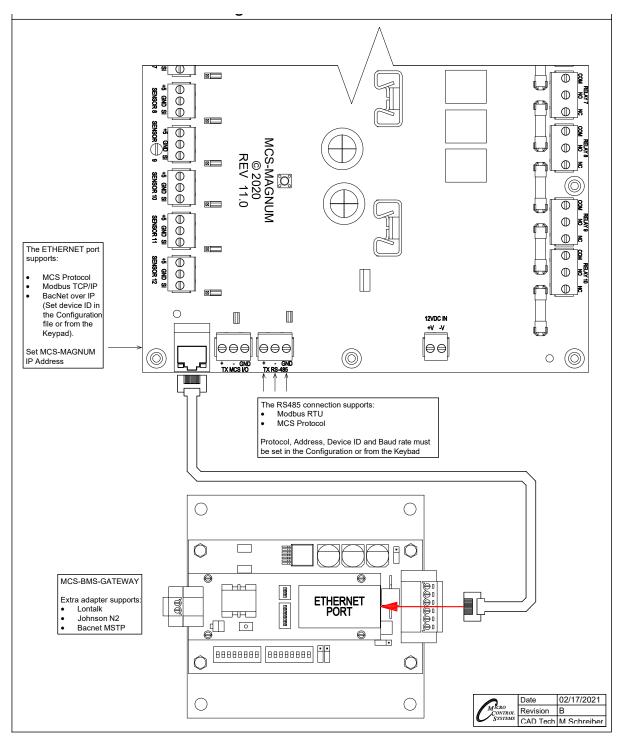
|    |                                       |       |     |      |                |       |                              |                           | Setp                        | oint Info               | ormation S                                  | creen                           |                     |          |                            |                                       |                                   |              |             |         |
|----|---------------------------------------|-------|-----|------|----------------|-------|------------------------------|---------------------------|-----------------------------|-------------------------|---------------------------------------------|---------------------------------|---------------------|----------|----------------------------|---------------------------------------|-----------------------------------|--------------|-------------|---------|
| #  | Name                                  | Value | Min | Max  | Adjust<br>Valu | (SEC) | Max Time<br>Allowed<br>(SEC) | Lockout<br>Delay<br>(HRS) | Safety<br>Down<br>Time(MIN) | Active or<br>Non-Active | Select Value:<br># decimals &<br>print char | Level Of<br>Auth. To<br>Display | Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Setback |
| 26 | STEP DELAY                            | 180   | 60  | 600  | 5              | 120   | 120                          | 2                         | 10                          | Active                  | . SECONDS                                   | View Only                       | Alarm               |          | 0                          | 0                                     | 0                                 | —            | —           |         |
| 27 | MAX ROC-                              | -0.1  |     | -0.1 | 0.1            | 0     | 0                            | 0                         | 0                           | Active                  | . TEMP                                      | Superviso                       | Target              | ••       | ]                          |                                       |                                   | 3            | 0           | 5       |
| 28 | MAX ROC+                              | 0.1   | 0.1 | 2    | 0.1            | 0     | 0                            | 0                         | 0                           | Active                  | . TEMP                                      | Superviso                       | Target              | ••       | ]—                         |                                       | —                                 | 0.5          | 0           | 0.5     |
| 29 | ROC INTERVAL                          | 30    | 15  | 60   | 1              | 0     | 0                            | 0                         | 0                           | Active                  | . SECONDS                                   | Superviso                       | Setpoint            |          |                            |                                       |                                   |              | —           |         |
|    | ····· · · · · · · · · · · · · · · · · | 0     |     |      |                | -     | - 1                          | -                         | -                           | -                       |                                             | -                               | -                   |          |                            |                                       |                                   |              |             |         |

Once the Derivative logic is enable, the capacity control logic will calculated a Derivative adjustment to make to the "Wanted %". The calculated adjustment is as follows:

**Derivative adjustment** = (capacity control's ROC value \* Setpoint #28 Setback value) + Accumulated Derivative adjustment remainder;

**Accumulated Derivative adjustment remainder** = Derivative adjustment modulus 10 (This accumulates the 2nd decimal point values x.x0)

**Derivative adjustment = Proportional adjustment** / 10 (This gets rid of the 2nd decimal place, "Wanted %" resolution is only 1 decimal place)


# **Chapter - 33. BMS Communication Protocols**

The MCS-Magnum supports as standard: Modbus RTU protocol.

Using the MCS-BMS-GATEWAY, the MCS-Magnum can also support Johnson N2, LonTalk and Bacnet MSTP, BACnet IP and Modbus TCP/IP.

Supported baud rates for Modbus RTU and Johnson N2 are 4800bps, 9600bps, 19200bps, 38400bps, and 57600bps.

# **33.1. MCS-Magnum to BMS Connections**



# **33.2. Sensor Input Points**

Sensor numbering is based upon the MCS-MAGNUM or MCS-SI-BASE / EXT hardware type board Notable BACnet properties available: Units

| Magnum      | BACnet<br>ID | BACnet Name     | Modbus<br>Register | N2      |
|-------------|--------------|-----------------|--------------------|---------|
| Sensor M-1  | AI: 1        | Refer to Config | *30001             | *Al: 1  |
| Sensor M-2  | AI: 2        | Refer to Config | *30002             | *Al: 2  |
| Sensor M-3  | AI: 3        | Refer to Config | *30003             | *Al: 3  |
| Sensor M-4  | AI: 4        | Refer to Config | *30004             | *Al: 4  |
| Sensor M-5  | AI: 5        | Refer to Config | *30005             | *Al: 5  |
| Sensor M-6  | AI: 6        | Refer to Config | *30006             | *Al: 6  |
| Sensor M-7  | AI: 7        | Refer to Config | *30007             | *Al: 7  |
| Sensor M-8  | AI: 8        | Refer to Config | *30008             | *Al: 8  |
| Sensor M-9  | AI: 9        | Refer to Config | *30009             | *Al: 9  |
| Sensor M-10 | AI:10        | Refer to Config | *30010             | *AI: 10 |
| Sensor M-11 | AI:11        | Refer to Config | *30011             | *Al: 11 |
| Sensor M-12 | AI:12        | Refer to Config | *30012             | *Al: 12 |
| Sensor M-13 | AI:13        | Refer to Config | *30013             | *Al: 13 |
| Sensor M-14 | AI:14        | Refer to Config | *30014             | *AI: 14 |
| Sensor M-15 | AI:15        | Refer to Config | *30015             | *Al: 15 |
| Sensor M-16 | AI:16        | Refer to Config | *30016             | *AI: 16 |
| Sensor 1-1  | AI:17        | Refer to Config | *30017             | *Al: 17 |
| Sensor 1-2  | AI:18        | Refer to Config | *30018             | *Al: 18 |
| Sensor 1-3  | AI:19        | Refer to Config | *30019             | *AI: 19 |
| Sensor 1-4  | AI:20        | Refer to Config | *30020             | *AI: 20 |
| Sensor 1-5  | AI:21        | Refer to Config | *30021             | *AI: 21 |
| Sensor 1-6  | AI:22        | Refer to Config | *30022             | *AI: 22 |
| Sensor 1-7  | AI:23        | Refer to Config | *30023             | *AI: 23 |
| Sensor 1-8  | AI:24        | Refer to Config | *30024             | *AI: 24 |
| Sensor 1-9  | AI:25        | Refer to Config | *30025             | *AI: 25 |
| Sensor 1-10 | AI:26        | Refer to Config | *30026             | *AI: 26 |
| Sensor 1-11 | AI:27        | Refer to Config | *30027             | *AI: 27 |
| Sensor 1-12 | AI:28        | Refer to Config | *30028             | *AI: 28 |
| Sensor 1-13 | AI:29        | Refer to Config | *30029             | *AI: 29 |
| Sensor 1-14 | AI:30        | Refer to Config | *30030             | *AI: 30 |
| Sensor 1-15 | AI:31        | Refer to Config | *30031             | *AI: 31 |
| Sensor 1-16 | AI:32        | Refer to Config | *30032             | *AI: 32 |
| Sensor 2-1  | AI:33        | Refer to Config | *30033             | *AI: 33 |
| Sensor 2-2  | AI:34        | Refer to Config | *30034             | *AI: 34 |
| Sensor 2-3  | AI:35        | Refer to Config | *30035             | *AI: 35 |
| Sensor 2-4  | AI:36        | Refer to Config | *30036             | *AI: 36 |
| Sensor 2-5  | AI:37        | Refer to Config | *30037             | *AI: 37 |
| Sensor 2-6  | AI:38        | Refer to Config | *30038             | *AI: 38 |
| Sensor 2-7  | AI:39        | Refer to Config | *30039             | *AI: 39 |
| Sensor 2-8  | AI:40        | Refer to Config | *30040             | *AI: 40 |

| Magnum      | BACnet<br>ID | BACnet Name     | Modbus<br>Register | N2      |
|-------------|--------------|-----------------|--------------------|---------|
| Sensor 2-9  | AI:41        | Refer to Config | *30041             | *AI: 41 |
| Sensor 2-10 | AI:42        | Refer to Config | *30042             | *AI: 42 |
| Sensor 2-11 | AI:43        | Refer to Config | *30043             | *AI: 43 |
| Sensor 2-12 | AI:44        | Refer to Config | *30044             | *AI: 44 |
| Sensor 2-13 | AI:45        | Refer to Config | *30045             | *AI: 45 |
| Sensor 2-14 | AI:46        | Refer to Config | *30046             | *AI: 46 |
| Sensor 2-15 | AI:47        | Refer to Config | *30047             | *AI: 47 |
| Sensor 2-16 | AI:48        | Refer to Config | *30048             | *AI: 48 |
| Sensor 3-1  | AI:49        | Refer to Config | *30049             | *AI:49  |
| Sensor 3-2  | AI:50        | Refer to Config | *30050             | *AI: 50 |
| Sensor 3-3  | AI:51        | Refer to Config | *30051             | *AI: 51 |
| Sensor 3-4  | AI:52        | Refer to Config | *30052             | *AI: 52 |
| Sensor 3-5  | AI:53        | Refer to Config | *30053             | *AI: 53 |
| Sensor 3-6  | AI:54        | Refer to Config | *30054             | *AI: 54 |
| Sensor 3-7  | AI:55        | Refer to Config | *30055             | *AI: 55 |
| Sensor 3-8  | AI:56        | Refer to Config | *30056             | *AI: 56 |
| Sensor 3-9  | AI:57        | Refer to Config | *30057             | *AI: 57 |
| Sensor 3-10 | AI:58        | Refer to Config | *30058             | *AI: 58 |
| Sensor 3-11 | AI:59        | Refer to Config | *30059             | *AI: 59 |
| Sensor 3-12 | AI:60        | Refer to Config | *30060             | *AI: 60 |
| Sensor 3-13 | AI:61        | Refer to Config | *30061             | *AI: 61 |
| Sensor 3-14 | AI:62        | Refer to Config | *30062             | *AI: 62 |
| Sensor 3-15 | AI:63        | Refer to Config | *30063             | *AI: 63 |
| Sensor 3-16 | AI:64        | Refer to Config | *30064             | *AI: 64 |
| Sensor 4-1  | AI:65        | Refer to Config | *30065             | *AI: 65 |
| Sensor 4-2  | AI:66        | Refer to Config | *30066             | *AI: 66 |
| Sensor 4-3  | AI:67        | Refer to Config | *30067             | *AI: 67 |
| Sensor 4-4  | AI:68        | Refer to Config | *30068             | *AI: 68 |
| Sensor 4-5  | AI:69        | Refer to Config | *30069             | *AI: 69 |
| Sensor 4-6  | AI:70        | Refer to Config | *30070             | *AI: 70 |
| Sensor 4-7  | AI:71        | Refer to Config | *30071             | *AI: 71 |
| Sensor 4-8  | AI:72        | Refer to Config | *30072             | *AI: 72 |
| Sensor 4-9  | AI:73        | Refer to Config | *30073             | *AI: 73 |
| Sensor 4-10 | AI:74        | Refer to Config | *30074             | *AI: 74 |
| Sensor 4-11 | AI:75        | Refer to Config | *30075             | *AI: 75 |
| Sensor 4-12 | AI:76        | Refer to Config | *30076             | *AI: 76 |
| Sensor 4-13 | AI:77        | Refer to Config | *30077             | *AI: 77 |
| Sensor 4-14 | AI:78        | Refer to Config | *30078             | *AI: 78 |
| Sensor 4-15 | AI:79        | Refer to Config | *30079             | *AI: 79 |
| Sensor 4-16 | AI:80        | Refer to Config | *30080             | *AI: 80 |

\*- Indicates value multiplied by 10 to include one decimal place. (I.e. BMS value of 500 indicates actual value 50.0)

# **33.3. Relay Output Points**

Relay Output points are read-only. Sensor numbering is based upon MCS-RO-BASE / EXT hardware type board

| Magnum      | BACnet ID | BACnet Name     | Modbus | N2     |
|-------------|-----------|-----------------|--------|--------|
| Relay M–1   | BO: 1     | Refer to Config | 00001  | BO: 1  |
| Relay M–2   | BO: 2     | Refer to Config | 00002  | BO: 2  |
| Relay M–3   | BO: 3     | Refer to Config | 00003  | BO: 3  |
| Relay M–4   | BO: 4     | Refer to Config | 00004  | BO: 4  |
| Relay M–5   | BO: 5     | Refer to Config | 00005  | BO: 5  |
| Relay M–6   | BO: 6     | Refer to Config | 00006  | BO: 6  |
| Relay M–7   | BO: 7     | Refer to Config | 00007  | BO: 7  |
| Relay M–8   | BO: 8     | Refer to Config | 80000  | BO: 8  |
| Relay M–9   | BO: 9     | Refer to Config | 00009  | BO: 9  |
| Relay M-10  | BO:10     | Refer to Config | 00010  | BO: 10 |
| Relay 1–1   | BO:11     | Refer to Config | 00011  | BO: 11 |
| Relay 1–2   | BO:12     | Refer to Config | 00012  | BO: 12 |
| Relay 1–3   | BO:13     | Refer to Config | 00013  | BO: 13 |
| Relay 1–4   | BO:14     | Refer to Config | 00014  | BO: 14 |
| Relay 1–5   | BO:15     | Refer to Config | 00015  | BO: 15 |
| Relay 1–6   | BO:16     | Refer to Config | 00016  | BO: 16 |
| Relay 1–7   | BO:17     | Refer to Config | 00017  | BO: 17 |
| Relay 1–8   | BO:18     | Refer to Config | 00018  | BO: 18 |
| Relay 1–9   | BO:19     | Refer to Config | 00019  | BO: 19 |
| Relay 1- 10 | BO:20     | Refer to Config | 00020  | BO: 20 |
| Relay 2–1   | BO:21     | Refer to Config | 00021  | BO: 21 |
| Relay 2–2   | BO:22     | Refer to Config | 00022  | BO: 22 |
| Relay 2–3   | BO:23     | Refer to Config | 00023  | BO: 23 |
| Relay 2–4   | BO:24     | Refer to Config | 00024  | BO: 24 |
| Relay 2–5   | BO:25     | Refer to Config | 00025  | BO: 25 |
| Relay 2–6   | BO:26     | Refer to Config | 00026  | BO: 26 |
| Relay 2–7   | BO:27     | Refer to Config | 00027  | BO: 27 |
| Relay 2–8   | BO:28     | Refer to Config | 00028  | BO: 28 |
| Relay 2–9   | BO:29     | Refer to Config | 00029  | BO: 29 |
| Relay 2 -10 | BO:30     | Refer to Config | 00030  | BO: 30 |
| Relay 3–1   | BO:31     | Refer to Config | 00031  | BO: 31 |
| Relay 3–2   | BO:32     | Refer to Config | 00032  | BO: 32 |
| Relay 3–3   | BO:33     | Refer to Config | 00033  | BO: 33 |
| Relay 3–4   | BO:34     | Refer to Config | 00034  | BO: 34 |
| Relay 3–5   | BO:35     | Refer to Config | 00035  | BO: 35 |
| Relay 3-6   | BO:36     | Refer to Config | 00036  | BO: 36 |
| Relay 3–7   | BO:37     | Refer to Config | 00037  | BO: 37 |
| Relay 3–8   | BO:38     | Refer to Config | 00038  | BO: 38 |
| Relay 3–9   | BO:39     | Refer to Config | 00039  | BO: 39 |
| Relay 3–10  | BO:40     | Refer to Config | 00040  | BO: 40 |

| Magnum      | BACnet ID | BACnet Name     | Modbus | N2     |
|-------------|-----------|-----------------|--------|--------|
| Relay 4–1   | BO:41     | Refer to Config | 00041  | BO: 41 |
| Relay 4–2   | BO:42     | Refer to Config | 00042  | BO: 42 |
| Relay 4–3   | BO:43     | Refer to Config | 00043  | BO: 43 |
| Relay 4-4   | BO:44     | Refer to Config | 00044  | BO: 44 |
| Relay 4–5   | BO:45     | Refer to Config | 00045  | BO: 45 |
| Relay 4–6   | BO:46     | Refer to Config | 00046  | BO: 46 |
| Relay 4–7   | BO:47     | Refer to Config | 00047  | BO: 47 |
| Relay 4–8   | BO:48     | Refer to Config | 00048  | BO: 48 |
| Relay 4–9   | BO:49     | Refer to Config | 00049  | BO: 49 |
| Relay 4 -10 | BO:50     | Refer to Config | 00050  | BO: 50 |
| Relay 5–1   | BO:51     | Refer to Config | 00051  | BO: 51 |
| Relay 5–2   | BO:52     | Refer to Config | 00052  | BO: 52 |
| Relay 5–3   | BO:53     | Refer to Config | 00053  | BO: 53 |
| Relay 5–4   | BO:54     | Refer to Config | 00054  | BO: 54 |
| Relay 5–5   | BO:55     | Refer to Config | 00055  | BO: 55 |
| Relay 5–6   | BO:56     | Refer to Config | 00056  | BO: 56 |
| Relay 5–7   | BO:57     | Refer to Config | 00057  | BO: 57 |
| Relay 5–8   | BO:58     | Refer to Config | 00058  | BO: 58 |
| Relay 5–9   | BO:59     | Refer to Config | 00059  | BO: 59 |
| Relay 5 -10 | BO:60     | Refer to Config | 00060  | BO: 60 |
| Relay 6–1   | BO:61     | Refer to Config | 00061  | BO: 61 |
| Relay 6–2   | BO:62     | Refer to Config | 00062  | BO: 62 |
| Relay 6–3   | BO:63     | Refer to Config | 00063  | BO: 63 |
| Relay 6–4   | BO:64     | Refer to Config | 00064  | BO: 64 |
| Relay 6–5   | BO:65     | Refer to Config | 00065  | BO: 65 |
| Relay 6- 6  | BO:66     | Refer to Config | 00066  | BO: 66 |
| Relay 6–7   | BO:67     | Refer to Config | 00067  | BO: 67 |
| Relay 6–8   | BO:68     | Refer to Config | 00068  | BO: 68 |
| Relay 6–9   | BO:69     | Refer to Config | 00069  | BO: 69 |
| Relay 6–10  | BO:70     | Refer to Config | 00760  | BO: 70 |
| Relay 7–1   | BO:71     | Refer to Config | 00071  | BO: 71 |
| Relay 7–2   | BO:72     | Refer to Config | 00072  | BO: 72 |
| Relay 7–3   | BO:73     | Refer to Config | 00073  | BO: 73 |
| Relay 7–4   | BO:74     | Refer to Config | 00074  | BO: 74 |
| Relay 7–5   | BO:75     | Refer to Config | 00075  | BO: 75 |
| Relay 7–6   | BO:76     | Refer to Config | 00076  | BO: 76 |
| Relay 7–7   | BO:77     | Refer to Config | 00077  | BO: 77 |
| Relay 7–8   | BO:78     | Refer to Config | 00078  | BO: 78 |
| Relay 7–9   | BO:79     | Refer to Config | 00079  | BO: 79 |
| Relay 7–10  | BO:80     | Refer to Config | 00070  | BO: 80 |

\*- Indicates value multiplied by 10 to include one decimal place. (I.e. BMS value of 500 indicates actual value 50.0)

| Magnum         | BACnet ID | BACnet Name     | Modbus Register | N2      |
|----------------|-----------|-----------------|-----------------|---------|
| Analog Out M-1 | AO:1      | Refer to Config | *30201          | *AO: 1  |
| Analog Out M-2 | AO:2      | Refer to Config | *30202          | *AO: 2  |
| Analog Out M-3 | AO:3      | Refer to Config | *30203          | *AO: 3  |
| Analog Out M-4 | AO:4      | Refer to Config | *30204          | *AO: 4  |
| Analog Out 1-1 | AO:5      | Refer to Config | *30205          | *AO: 5  |
| Analog Out 1-2 | AO:6      | Refer to Config | *30206          | *AO: 6  |
| Analog Out 1-3 | AO:7      | Refer to Config | *30207          | *AO: 7  |
| Analog Out 1-4 | AO:7      | Refer to Config | *30208          | *AO: 8  |
| Analog Out 2-1 | AO:8      | Refer to Config | *30209          | *AO: 9  |
| Analog Out 2-2 | AO:10     | Refer to Config | *30210          | *AO: 10 |
| Analog Out 2-3 | AO:11     | Refer to Config | *30211          | *AO: 11 |
| Analog Out 2-4 | AO:12     | Refer to Config | *30212          | *AO: 12 |
| Analog Out 3-1 | AO:13     | Refer to Config | *30213          | *AO: 13 |
| Analog Out 3-2 | AO:14     | Refer to Config | *30214          | *AO: 14 |
| Analog Out 3-3 | AO:15     | Refer to Config | *30215          | *AO: 15 |
| Analog Out 3-4 | AO:16     | Refer to Config | *30216          | *AO: 16 |
| Analog Out 4-1 | AO:17     | Refer to Config | *30217          | *AO: 17 |
| Analog Out 4-2 | AO:18     | Refer to Config | *30218          | *AO: 18 |
| Analog Out 4-3 | AO:19     | Refer to Config | *30219          | *AO: 19 |
| Analog Out 4-4 | AO:20     | Refer to Config | *30220          | *AO: 20 |

Analog Output PointsAnalog Output points are read-only. Sensor numbering is based upon MCS-SI-BASE / EXT hardware type board. Notable BACnet properties available: Units

\*- Indicates value multiplied by 10 to include one decimal place. (I.e. BMS value of 500 indicates actual value 50.0)

# **33.4. Setpoints**

Setpoints are read-only. Notable BACnet properties available: Units

| Magnum        | BACnet ID | BACnet Name                             | Modbus | N2      |
|---------------|-----------|-----------------------------------------|--------|---------|
| Setpoint #1   | AV:0      | STP# 1- <setpoint name=""></setpoint>   | 40301  | ADF:1   |
| Setpoint #21  | AV:88     | STP# 21- <setpoint name=""></setpoint>  | 40321  | ADF:89  |
| Setpoint #163 | AV:230    | STP# 163- <setpoint name=""></setpoint> | 40463  | ADF:231 |

\*- Indicates value multiplied by 10 to include one decimal place. (I.e. BMS value of 500 indicates actual value 50.0)

# 33.5. Chiller/Compressor States

State values are read-only. Notable BACnet properties available: Number of States, State-Text (Contains character text of current state)

| Magnum              | BACnet ID | BACnet Name         | Modbus Register | N2    |
|---------------------|-----------|---------------------|-----------------|-------|
| Chiller Unit State  | MV:0      | CHILLER STATE       | 30306           | BYT:1 |
| Compressor #1 State | MV:1      | COMPRESSOR #1 STATE | 30307           | BYT:2 |
| Compressor #2 State | MV:2      | COMPRESSOR #2 STATE | 30308           | BYT:3 |
| Compressor #3 State | MV:3      | COMPRESSOR #3 STATE | 30309           | BYT:4 |
| Compressor #4 State | MV:4      | COMPRESSOR #4 STATE | 30310           | BYT:5 |
| Compressor #5 State | MV:5      | COMPRESSOR #5 STATE | 30311           | BYT:6 |
| Compressor #6 State | MV:6      | COMPRESSOR #6 STATE | 30312           | BYT:7 |

| Magnum               | BACnet ID | BACnet Name          | Modbus Register | N2      |
|----------------------|-----------|----------------------|-----------------|---------|
| Compressor #7 State  | MV:7      | COMPRESSOR #7 STATE  | 30313           | BYT:8   |
| Compressor #8 State  | MV:8      | COMPRESSOR #8 STATE  | 30314           | BYT:9   |
| Compressor #9 State  | MV:130    | COMPRESSOR #9 STATE  | 30560           | BYT:131 |
| Compressor #10 State | MV:131    | COMPRESSOR #10 STATE | 30561           | BYT:132 |
| Compressor #11 State | MV:132    | COMPRESSOR #11 STATE | 30562           | BYT:133 |
| Compressor #12 State | MV:133    | COMPRESSOR #12 STATE | 30563           | BYT:134 |
| Compressor #13 State | MV:134    | COMPRESSOR #13 STATE | 30564           | BYT:135 |
| Compressor #14 State | MV:135    | COMPRESSOR #14 STATE | 30565           | BYT:136 |
| Compressor #15 State | MV:136    | COMPRESSOR #15 STATE | 30566           | BYT:137 |
| Compressor #16 State | MV:137    | COMPRESSOR #16 STATE | 30567           | BYT:138 |
| Compressor #17 State | MV:138    | COMPRESSOR #17 STATE | 30568           | BYT:139 |
| Compressor #18 State | MV:139    | COMPRESSOR #18 STATE | 30569           | BYT:140 |
| Compressor #19 State | MV:140    | COMPRESSOR #19 STATE | 30570           | BYT:141 |
| Compressor #20 State | MV:141    | COMPRESSOR #20 STATE | 30571           | BYT:142 |

# **33.6.** Chiller/Compressor Points

These points are read-only.

| Magnum                         | BACnet ID | BACnet Name         | Modbus | N2      |
|--------------------------------|-----------|---------------------|--------|---------|
| Wanted FLA%                    | AV:3      | Wanted FLA%         | 30318  | ADF:4   |
| Steps Wanted                   | AV:4      | Steps Wanted On     | 30315  | ADF:5   |
| Steps On                       | AV:5      | Steps On            | 30316  | ADF:6   |
| Step Delay                     | AV:6      | Step Delay          | 30317  | ADF:7   |
| Compressor #1 FLA%             | AV:7      | C1_FLA%             | *30319 | *ADF:8  |
| Compressor #1 Sat Suction      | AV:10     | C1_Sat Suct         | *30327 | *ADF:11 |
| Compressor #1 Sat Disch        | AV:11     | C1_Sat Disch        | *30329 | *ADF:12 |
| Compressor #1 Disch SH         | AV:12     | C1_Disch SH         | *30330 | *ADF:13 |
| Compressor #1 Suct SH          | AV:13     | C1_Suct SH          | *30328 | *ADF:14 |
| Compressor #1 Oil Pres Diff    | AV:63     | C1_Oil Pres Diff    | *30375 | *ADF:64 |
| Compressor #1 Comp State Timer |           | C1_Comp State Timer | *32602 |         |
| Compressor #2 FLA%             | AV:14     | C2_FLA%             | *30320 | *ADF:15 |
| Compressor #2 Sat Suction      | AV:17     | C2_Sat Suct         | *30331 | *ADF:18 |
| Compressor #2 Sat Disch        | AV:18     | C2_Sat Disch        | *30333 | *ADF:19 |
| Compressor #2 Disch SH         | AV:19     | C2_Disch SH         | *30334 | *ADF:20 |
| Compressor #2 Suct SH          | AV:20     | C2_Suct SH          | *30332 | *ADF:21 |
| Compressor #2 Oil Pres Diff    | AV:64     | C2_Oil Pres Diff    | *30376 | *ADF:65 |
| Compressor #2 Comp State Timer |           | C2_Comp State Timer | *32603 |         |
| Compressor #3 FLA%             | AV:21     | C3_FLA%             | *30321 | *ADF:22 |
| Compressor #3 Sat Suction      | AV:24     | C3_Sat Suct         | *30335 | *ADF:25 |
| Compressor #3 Sat Disch        | AV:25     | C3_Sat Disch        | *30337 | *ADF:26 |
| Compressor #3 Disch SH         | AV:26     | C3_Disch SH         | *30338 | *ADF:27 |
| Compressor #3 Suct SH          | AV:27     | C3_Suct SH          | *30336 | *ADF:28 |
| Compressor #3 Oil Pres Diff    | AV:65     | C3_Oil Pres Diff    | *30377 | *ADF:66 |
| Compressor #3 Comp State Timer |           | C3_Comp State Timer | *32604 |         |
| Compressor #4 FLA%             | AV:28     | C4_FLA%             | *30322 | *ADF:29 |
| Compressor #4 Sat Suction      | AV:31     | C4_Sat Suct         | *30339 | *ADF:32 |
| Compressor #4 Sat Disch        | AV:32     | C4_Sat Disch        | *30341 | *ADF:33 |
| Compressor #4 Disch SH         | AV:33     | C4_Disch SH         | *30342 | *ADF:34 |
| Compressor #4 Suct SH          | AV:34     | C4 Suct SH          | *30340 | *ADF:35 |

| Magnum                          | BACnet ID | BACnet Name          | Modbus | N2        |
|---------------------------------|-----------|----------------------|--------|-----------|
| Compressor #4 Oil Pres Diff     | AV:66     | C4_Oil Pres Diff     | *30378 | *ADF:67   |
| Compressor #4 Comp State Timer  |           | C4_Comp State Timer  | *32605 |           |
| Compressor #5 FLA%              | AV:35     | C5_FLA%              | *30323 | *ADF:36   |
| Compressor #5 Sat Suction       | AV:38     | C5 Sat Suct          | *30343 | *ADF:39   |
| Compressor #5 Sat Disch         | AV:39     | C5 Sat Disch         | *30345 | *ADF:40   |
| Compressor #5 Disch SH          | AV:40     | C5 Disch SH          | *30346 | *ADF:41   |
| Compressor #5 Suct SH           | AV:41     | C5 Suct SH           | *30344 | *ADF:42   |
| Compressor #5 Oil Pres Diff     | AV:67     | C5 Oil Pres Diff     | *30379 | *ADF:68   |
| Compressor #5 Comp State Timer  |           | C5 Comp State Timer  | *32606 |           |
| Compressor #6 FLA%              | AV:42     | C6 FLA%              | *30324 | *ADF:43   |
| Compressor #6 Sat Suction       | AV:45     | C6 Sat Suct          | *30347 | *ADF:46   |
| Compressor #6 Sat Disch         | AV:46     | C6_Sat Disch         | *30349 | *ADF:47   |
| Compressor #6 Disch SH          | AV:47     | C6 Disch SH          | *30350 | *ADF:48   |
| Compressor #6 Suct SH           | AV:48     | C6 Suct SH           | *30348 | *ADF:49   |
| Compressor #6 Oil Pres Diff     | AV:68     | C6 Oil Pres Diff     | *30380 | *ADF:69   |
| Compressor #6 Comp State Timer  |           | C6 Comp State Timer  | *32607 |           |
| Compressor #7 FLA%              | AV:49     | C7 FLA%              | *30325 | *ADF:50   |
| Compressor #7 Sat Suction       | AV:52     | C7 Sat Suct          | *30351 | *ADF:53   |
| Compressor #7 Sat Disch         | AV:53     | C7 Sat Disch         | *30353 | *ADF:54   |
| Compressor #7 Disch SH          | AV:54     | C7 Disch SH          | *30354 | *ADF:55   |
| Compressor #7 Suct SH           | AV:55     | C7 Suct SH           | *30352 | *ADF:56   |
| Compressor #7 Oil Pres Diff     | AV:69     | C7 Oil Pres Diff     | *30381 | *ADF:70   |
| Compressor #7 Comp State Timer  |           | C7 Comp State Timer  | *32608 | -         |
| Compressor #8 FLA%              | AV:56     | C8 FLA%              | *30326 | *ADF:57   |
| Compressor #8 Sat Suction       | AV:59     | C8 Sat Suct          | *30352 | *ADF:53   |
| Compressor #8 Sat Suction       | AV:59     | C8 Sat Suct          | *30355 | *ADF:60   |
| Compressor #8 Sat Disch         | AV:60     | C8 Sat Disch         | *30357 | *ADF:61   |
| Compressor #8 Disch SH          | AV:61     | C8 Disch SH          | *30358 | *ADF:62   |
| Compressor #8 Suct SH           | AV:62     | C8 Suct SH           | *30356 | *ADF:63   |
| Compressor #8 Oil Pres Diff     | AV:70     | C8 Oil Pres Diff     | *30382 | *ADF:71   |
| Compressor #8 Comp State Timer  |           | C8 Comp State Timer  | *32609 |           |
| Compressor #9 FLA%              | AV:440    | C9 FLA%              | *30572 | *ADF:441  |
| Compressor #9 Sat Suction       | AV: 443   | C9 Sat Suct          | *30584 | *ADF: 442 |
| Compressor #9 Sat Disch         | AV: 444   | C9_Sat Disch         | *30586 | *ADF: 443 |
| Compressor #9 Disch SH          | AV: 445   | C9 Disch SH          | *30587 | *ADF: 444 |
| Compressor #9 Suct SH           | AV: 446   | C9 Suct SH           | *30585 | *ADF: 445 |
| Compressor #9 Oil Pres Diff     | AV:524    | C9 Oil Pres Diff     | *30656 | *ADF:525  |
| Compressor #9 Comp State Timer  |           | C9 Comp State Timer  | *32610 |           |
| Compressor #10 FLA%             | AV:447    | C10_FLA%             | *30573 | *ADF:448  |
| Compressor #10 Sat Suction      | AV: 450   | C10_Sat Suct         | *30588 | *ADF: 451 |
| Compressor #10 Sat Disch        | AV: 451   | C10_Sat Disch        | *30590 | *ADF: 452 |
| Compressor #10 Disch SH         | AV: 452   | C10 Disch SH         | *30591 | *ADF: 453 |
| Compressor #10 Suct SH          | AV: 453   | C10 Suct SH          | *30589 | *ADF: 454 |
| Compressor #10 Oil Pres Diff    | AV:525    | C10 Oil Pres Diff    | *30657 | *ADF:526  |
| Compressor #10 Comp State Timer |           | C10 Comp State Timer | *32611 |           |
| Compressor #11 FLA%             | AV:454    | C11 FLA%             | *30574 | *ADF:455  |
| Compressor #11 Sat Suction      | AV: 457   | C11 Sat Suct         | *30592 | *ADF: 458 |
| Compressor #11 Sat Disch        | AV: 458   | C11_Sat Disch        | *30594 | *ADF: 459 |
| Compressor #11 Disch SH         | AV: 459   | C11 Disch SH         | *30595 | *ADF: 460 |
| Compressor #11 Suct SH          | AV: 460   | C11_Suct SH          | *30593 | *ADF: 461 |
| Compressor #11 Oil Pres Diff    | AV: 526   | C11 Oil Pres Diff    | *30658 | *ADF: 527 |

| Magnum                          | BACnet ID | BACnet Name          | Modbus | N2        |
|---------------------------------|-----------|----------------------|--------|-----------|
| Compressor #11 Comp State Timer |           | C11_Comp State Timer | *32612 |           |
| Compressor #12 FLA%             | AV: 461   | C12_FLA%             | *30575 | *ADF: 462 |
| Compressor #12 Sat Suction      | AV: 464   | C12_Sat Suct         | *30596 | *ADF: 465 |
| Compressor #12 Sat Disch        | AV: 465   | C12_Sat Disch        | *30598 | *ADF: 466 |
| Compressor #12 Disch SH         | AV: 466   | C12_Disch SH         | *30599 | *ADF: 467 |
| Compressor #12 Suct SH          | AV: 467   | C12_Suct SH          | *30597 | *ADF 468  |
| Compressor #12 Oil Pres Diff    | AV:527    | C12_Oil Pres Diff    | *30659 | *ADF:528  |
| Compressor #12 Comp State Timer |           | C12_Comp State Timer | *32613 |           |
| Compressor #13 FLA%             | AV:468    | C13_FLA%             | *30576 | *ADF:469  |
| Compressor #13 Sat Suction      | AV: 471   | C13_Sat Suct         | *30600 | *ADF: 470 |
| Compressor #13 Sat Disch        | AV: 472   | C13_Sat Disch        | *30602 | *ADF: 473 |
| Compressor #13 Disch SH         | AV: 473   | C13_Disch SH         | *30603 | *ADF: 474 |
| Compressor #13 Suct SH          | AV: 474   | C13_Suct SH          | *30600 | *ADF: 475 |
| Compressor #13 Oil Pres Diff    | AV: 528   | C13_Oil Pres Diff    | *30661 | *ADF: 529 |
| Compressor #13 Comp State Timer |           | C13_Comp State Timer | *32614 |           |
| Compressor #14 FLA%             | AV: 475   | C14_FLA%             | *30577 | *ADF: 476 |
| Compressor #14 Sat Suction      | AV: 478   | C14_Sat Suct         | *30604 | *ADF: 479 |
| Compressor #14 Sat Disch        | AV: 479   | C14_Sat Disch        | *30606 | *ADF: 480 |
| Compressor #14 Disch SH         | AV: 480   | C14_Disch SH         | *30607 | *ADF: 481 |
| Compressor #14 Suct SH          | AV: 481   | C14_Suct SH          | *30605 | *ADF: 482 |
| Compressor #14 Oil Pres Diff    | AV: 529   | C14_Oil Pres Diff    | *30661 | *ADF: 530 |
| Compressor #14 Comp State Timer |           | C14_Comp State Timer | *32615 |           |
| Compressor #15 FLA%             | AV: 482   | C15_FLA%             | *30578 | *ADF: 483 |
| Compressor #15 Sat Suction      | AV: 485   | C15 Sat Suct         | *30608 | *ADF: 486 |
| Compressor #15 Sat Disch        | AV: 486   | C15_Sat Disch        | *30610 | *ADF: 487 |
| Compressor #15 Disch SH         | AV: 487   | C15_Disch SH         | *30611 | *ADF: 488 |
| Compressor #15 Suct SH          | AV: 488   | C15_Suct SH          | *30609 | *ADF: 489 |
| Compressor #15 Oil Pres Diff    | AV: 530   | C15_Oil Pres Diff    | *30662 | *ADF: 531 |
| Compressor #15 Comp State Timer |           | C15_Comp State Timer | *32616 |           |
| Compressor #16 FLA%             | AV: 489   | C16_FLA%             | *30579 | *ADF: 490 |
| Compressor #16 Sat Suction      | AV: 492   | C16_Sat Suct         | *30612 | *ADF: 493 |
| Compressor #16 Sat Disch        | AV: 493   | C16_Sat Disch        | *30614 | *ADF: 494 |
| Compressor #16 Disch SH         | AV: 494   | C16_Disch SH         | *30615 | *ADF: 495 |
| Compressor #16 Suct SH          | AV: 495   | C16_Suct SH          | *30613 | *ADF: 496 |
| Compressor #16 Oil Pres Diff    | AV: 531   | C16_Oil Pres Diff    | *30663 | *ADF: 532 |
| Compressor #16 Comp State Timer |           | C16_Comp State Timer | *32617 |           |
| Compressor #17 FLA%             | AV: 496   | C17_FLA%             | *30580 | *ADF: 497 |
| Compressor #17 Sat Suction      | AV: 499   | C17_Sat Suct         | *30616 | *ADF: 500 |
| Compressor #17 Sat Disch        | AV: 500   | C17_Sat Disch        | *30618 | *ADF: 501 |
| Compressor #17 Disch SH         | AV: 501   | C17_Disch SH         | *30619 | *ADF: 502 |
| Compressor #17 Suct SH          | AV: 502   | C17_Suct SH          | *30617 | *ADF: 503 |
| Compressor #17 Oil Pres Diff    | AV: 532   | C17_Oil Pres Diff    | *30664 | *ADF: 533 |
| Compressor #17 Comp State Timer |           | C17_Comp State Timer | *32618 |           |
| Compressor #18 FLA%             | AV: 503   | C18_FLA%             | *30581 | *ADF: 504 |
| Compressor #18 Sat Suction      | AV: 506   | C18_Sat Suct         | *30620 | *ADF: 507 |
| Compressor #18 Sat Disch        | AV: 507   | C18_Sat Disch        | *30622 | *ADF: 508 |
| Compressor #18 Disch SH         | AV: 508   | C18_Disch SH         | *30623 | *ADF: 509 |
| Compressor #18 Suct SH          | AV: 509   | C18_Suct SH          | *30621 | *ADF: 510 |
| Compressor #18 Oil Pres Diff    | AV: 533   | C18_Oil Pres Diff    | *30665 | *ADF: 534 |
| Compressor #18 Comp State Timer |           | C18_Comp State Timer | *32619 |           |
| Compressor #19 FLA%             | AV: 510   | C19 FLA%             | *30582 | *ADF: 511 |

-

| Magnum                          | BACnet ID | BACnet Name          | Modbus | N2        |
|---------------------------------|-----------|----------------------|--------|-----------|
| Compressor #19 Sat Suction      | AV: 513   | C19_Sat Suct         | *30624 | *ADF: 514 |
| Compressor #19 Sat Disch        | AV: 514   | C19_Sat Disch        | *30626 | *ADF: 515 |
| Compressor #19 Disch SH         | AV: 515   | C19_Disch SH         | *30627 | *ADF: 516 |
| Compressor #19 Suct SH          | AV: 516   | C19_Suct SH          | *30625 | *ADF: 517 |
| Compressor #19 Oil Pres Diff    | AV: 534   | C19_Oil Pres Diff    | *30666 | *ADF: 535 |
| Compressor #19 Comp State Timer |           | C19_Comp State Timer | *32620 |           |
| Compressor #20 FLA%             | AV: 517   | C20_FLA%             | *30583 | *ADF: 518 |
| Compressor #20 Sat Suction      | AV: 520   | C20_Sat Suct         | *30628 | *ADF: 521 |
| Compressor #20 Sat Disch        | AV: 521   | C20_Sat Disch        | *30630 | *ADF: 522 |
| Compressor #20 Disch SH         | AV: 522   | C20_Disch SH         | *30631 | *ADF: 523 |
| Compressor #20 Suct SH          | AV: 523   | C20_Suct SH          | *30629 | *ADF: 524 |
| Compressor #20 Oil Pres Diff    | AV: 535   | C20_Oil Pres Diff    | *30667 | *ADF: 536 |
| Compressor #20 Comp State Timer |           | C21_Comp State Timer | *32621 |           |

\*- Indicates value multiplied by 10 to include one decimal place. (I.e. BMS value of 500 indicates actual value 50.0)

#### 33.7. Unit Alarms

|                                         | Modbus            | Info     | Bacnet Object lo      | dentifier |                 | V17 Frimwar | e          |
|-----------------------------------------|-------------------|----------|-----------------------|-----------|-----------------|-------------|------------|
| Unit Alarms                             | Function Type     | Register | Bacnet Object<br>Type | Address   | Relay<br>output | Modbus      | Bacnet     |
| EMERGENCY_STOP                          | 04:input Register | 31011    | AV: Ananlog Value     | 1296      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| FREEZE_PROTECTION                       | 04:input Register | 31012    | AV: Ananlog Value     | 1297      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| HIGH_SUMP_TEMP                          | 04:input Register | 31013    | AV: Ananlog Value     | 1298      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| PHASE_LOSS                              | 04:input Register | 31014    | AV: Ananlog Value     | 1299      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| HIGH_DELTA_TEMP                         | 04:input Register | 31015    | AV: Ananlog Value     | 1300      | HVAC/           | HVAC/       | HVAC/      |
| VOLTAGE                                 | 04:input Register | 31016    | AV: Ananlog Value     | 1301      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| SMOKE_ALARM                             | 04:input Register | 31017    | AV: Ananlog Value     | 1302      | No Support      | No Support  | No Support |
| FIRE_ALARM                              | 04:input Register | 31018    | AV: Ananlog Value     | 1303      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| COMMON_CONDENSER                        | 04:input Register | 31019    | AV: Ananlog Value     | 1304      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| CIRCUIT_CONDENSER                       | 04:input Register | 31020    | AV: Ananlog Value     | 1305      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Fuild Cooler Fan Fault                  | 04:input Register | 31021    | AV: Ananlog Value     | 1306      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| PUMP_FAILURE                            | 04:input Register | 31022    | AV: Ananlog Value     | 1307      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| PROCESS_PUMP_FAILURE                    | 04:input Register | 31023    | AV: Ananlog Value     | 1308      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| PROCESS_PUMP_LOW_FLOW                   | 04:input Register | 31024    | AV: Ananlog Value     | 1309      | HVAC            | HVAC        | HVAC       |
| BOILER_PUMP_FAULT                       | 04:input Register | 31025    | AV: Ananlog Value     | 1310      | HVAC            | HVAC        | HVAC       |
| BOILER_PUMP_HIGH_AMPS                   | 04:input Register | 31026    | AV: Ananlog Value     | 1311      | HVAC            | HVAC        | HVAC       |
| BOILER_PUMP_LOW_AMPS                    | 04:input Register | 31027    | AV: Ananlog Value     | 1312      | HVAC            | HVAC        | HVAC       |
| BOILER_STAGE_FAULT                      | 04:input Register | 31028    | AV: Ananlog Value     | 1313      | HVAC            | HVAC        | HVAC       |
| HIGH_WATER_TEMP                         | 04:input Register | 31029    | AV: Ananlog Value     | 1314      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| OVERHEAT_PROTECTION                     | 04:input Register | 31030    | AV: Ananlog Value     | 1315      | HVAC            | HVAC        | HVAC       |
| RTU_SUPPLY_DUCT                         | 04:input Register | 31031    | AV: Ananlog Value     | 1316      | RTU             | RTU         | RTU        |
| RTU_EXHAUST_FAN_FAULT                   | 04:input Register | 31032    | AV: Ananlog Value     | 1317      | RTU             | RTU         | RTU        |
| RTU_MOD_GAS_HEATER_FAULT                | 04:input Register | 31033    | AV: Ananlog Value     | 1318      | RTU             | RTU         | RTU        |
| RTU_SCR_HEATER_FAULT                    | 04:input Register | 31034    | AV: Ananlog Value     | 1319      | RTU             | RTU         | RTU        |
| RTU_CLOGGED_FILTER                      | 04:input Register | 31035    | AV: Ananlog Value     | 1320      | RTU             | RTU         | RTU        |
| RTU_HIGH_STATIC_PRESSURE                | 04:input Register | 31036    | AV: Ananlog Value     | 1321      | RTU             | RTU         | RTU        |
| RTU_LOW_STATIC_PRESSURE                 | 04:input Register | 31037    | AV: Ananlog Value     | 1322      | RTU             | RTU         | RTU        |
| BOILER_PUMP_FLOW_FAULT                  | 04:input Register | 31038    | AV: Ananlog Value     | 1323      | HVAC            | HVAC        | HVAC       |
| Leaving Water Temp. Sensor Fault        | 04:input Register | 31039    | AV: Ananlog Value     | 1324      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Reutrn Water Temp. Sensor Fault         | 04:input Register | 31040    | AV: Ananlog Value     | 1325      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Evap Water Pressure In #1 Sensor Fault  | 04:input Register | 31041    | AV: Ananlog Value     | 1326      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Evap Water Pressure Out #1 Sensor Fault | 04:input Register | 31042    | AV: Ananlog Value     | 1327      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Evap Water Pressure In #2 Sensor Fault  | 04:input Register | 31043    | AV: Ananlog Value     | 1328      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| Evap Water Pressure Out #2 Sensor Fault | 04:input Register | 31044    | AV: Ananlog Value     | 1329      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| RTU Zone Temp. Sensor Fault             | 04:input Register | 31045    | AV: Ananlog Value     | 1330      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |
| RTU Ambient Temp. Sensor Fault          | 04:input Register | 31046    | AV: Ananlog Value     | 1331      | HVAC//RTU       | HVAC//RTU   | HVAC//RTU  |

#### **33.8. Compressor Alarms**

|                                            | V17 Frimv     | vare Supporting Alarm | Indicators    |
|--------------------------------------------|---------------|-----------------------|---------------|
| Compressor Alarms                          | Relay output  | Modbus                | Bacnet        |
| LOW_SUCTION                                | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| UNSAFE_SUCTION                             | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_DISCHARGE_PSI                         | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_DISCHARGE_TEMP                        | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_OIL_PSI                                | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| UNSAFE_OIL_PSI                             | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_OIL_TEMP                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| DIRTY_OIL_FILTER                           | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_OIL_SEAL_TEMP                         | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| NO_CRANK_CASE_HEATER_PROOF                 | Not Supported | Not Supported         | Not Supported |
| HIGH_AMPS                                  | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_AMPS                                   | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_MOTOR_TEMP                            | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| NO_COMPRESSOR_PROOF                        | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_OIL_SUPERHEAT (Not Supported -no code) | Not Supported | Not Supported         | Not Supported |
| PUMP_DOWN                                  | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_DISCHARGE_PSI                          | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LUBE_OIL_TEMP                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LUBE_OIL_PSI                               | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LUBE_OIL_TIME                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| REFRIGERATION_LEAK                         | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_REFRIGERATION_TEMP                     | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| TOO_MANY_PURGES                            | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| EXCESS_PURGING_TIME                        | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| PURGE_FLOAT_ERROR                          | Not Supported | Not Supported         | Not Supported |
| LOW_DIFFERENTIAL_PSI_RATIO                 | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_SUPERHEAT                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_DISCHARGE_SUPERHEAT                    | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOST_LEG_PART_WINDING                      | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| HIGH_PARTS_PER_MILLION_LEAK                | Not Supported | Not Supported         | Not Supported |
| HIGH_REFRIGERATION_LEVEL                   | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_OIL_LEVEL                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| NO_FLOW                                    | Not Supported | Not Supported         | Not Supported |
| OIL_FLOW                                   | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| COMPRESSOR_SPEED_FAULT                     | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |
| LOW_TANDEM_SUPERHEAT                       | Not Supported | Not Supported         | Not Supported |
| HIGH_TANDEM_SUPERHEAT                      | Not Supported | Not Supported         | Not Supported |
| EXCESS_SURGES                              | HVAC/RTU      | HVAC/RTU              | HVAC/RTU      |

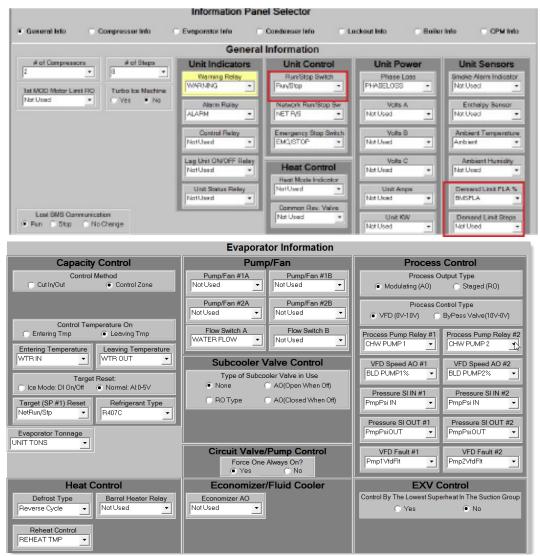
|                                           | V17 Frimw    | are Supporting Alarm | Indicators |
|-------------------------------------------|--------------|----------------------|------------|
| Compressor Alarms                         | Relay output | Modbus               | Bacnet     |
| HIGH_SUPERHEAT                            | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Suction Temperature Sensor Fault          | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Discharge Temperature Sensor Fault        | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Suction Pressure Sensor Fault             | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Discharge Pressure Sensor Fault           | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Oil Pressure Sensor Sensor Fault          | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Oil Temperature Sensor Fault              | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Motor Temperature Sensor Fault            | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Evap Refrigerant Temperature Sensor Fault | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Evap Refrigerant Level Sensor Fault       | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Oil Seal Temperature Sensor Fault         | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Pre-Oil Filter Presssure Sensor Fault     | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |
| Circuit Leaving Water Sensor Fault        | HVAC/RTU     | HVAC/RTU             | HVAC/RTU   |

|                             |                         |             |             |             |             |             |             |               |               | Modbus        | bus R          | Register       | _              |                |                   |                |                   |                   |                   |                   |              |
|-----------------------------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|--------------|
| Alarms                      | Modbus<br>Function Type | Comp.<br>#1 | Comp.<br>#2 | Comp.<br>#3 | Comp.<br>#4 | Comp.<br>#5 | Comp.<br>#6 | Comp. 0<br>#7 | Comp. 0<br>#8 | Comp. C<br>#9 | Comp. C<br>#10 | Comp. C<br>#11 | Comp. C<br>#12 | Comp. C<br>#13 | Comp. Cc<br>#14 # | Comp. C<br>#15 | Comp. Co<br>#16 # | Comp. Co<br>#17 # | Comp. Co<br>#18 # | Comp. Cc<br>#19 # | Comp.<br>#20 |
| LOW_SUCTION                 | 04:input Register       | 31201       | 31252       | 31303       | 31354       | 31405       | 31456       | 31507 3       | 31558 3       | 31609 3       | 31660 3        | 31711 3        | 31762 3        | 31813 3        | 31864 31          | 31915 3        | 31966 32          | 32017 32          | 32068 32          | 32119 32          | 32170        |
| UNSAFE_SUCTION              | 04:input Register       | 31202       | 31253       | 31304       | 31355       | 31406       | 31457       | 31508 3       | 31559 3       | 31610 3       | 31661 3        | 31712 3        | 31763 3        | 31814 3        | 31865 31          | 31916 3        | 31967 32          | 32018 32          | 32069 32          | 32120 32          | 32171        |
| HIGH_DISCHARGE_PSI          | 04:input Register       | 31203       | 31254       | 31305       | 31356       | 31407       | 31458       | 31509 3       | 31560         | 31611 3       | 31662 3        | 31713 3        | 31764 3        | 31815 3        | 31866 31          | 31917 3        | 31968 32          | 32019 32          | 32070 32          | 32121 32          | 32172        |
| HIGH_DISCHARGE_TEMP         | 04:input Register       | 31204       | 31255       | 31306       | 31357       | 31408       | 31459       | 31510 3       | 31561 3       | 31612 3       | 31663 3        | 31714 3        | 31765 3        | 31816 3        | 31867 31          | 31918 3        | 31969 32          | 32020 32          | 32071 32          | 32122 32          | 32173        |
| LOW_OIL_PSI                 | 04:input Register       | 31205       | 31256       | 31307       | 31358       | 31409       | 31460       | 31511 3       | 31562 3       | 31613 3       | 31664 3        | 31715 3        | 31766 3        | 31817 3        | 31868 31          | 31919 3        | 31970 32          | 32021 32          | 32072 32          | 32123 32          | 32174        |
| UNSAFE_OIL_PSI              | 04:input Register       | 31206       | 31257       | 31308       | 31359       | 31410       | 31461       | 31512 3       | 31563 3       | 31614 3       | 31665 3        | 31716 3        | 31767 3        | 31818 3        | 31869 31          | 31920 3        | 31971 32          | 32022 32          | 32073 32          | 32124 32          | 32175        |
| HIGH_OIL_TEMP               | 04:input Register       | 31207       | 31258       | 31309       | 31360       | 31411       | 31462       | 31513 3       | 31564 3       | 31615 3       | 31666 3        | 31717 3        | 31768 3        | 31819 3        | 31870 31          | 31921 3        | 31972 32          | 32023 32          | 32074 32          | 32125 32          | 32176        |
| DIRTY_OIL_FILTER            | 04:input Register       | 31208       | 31259       | 31310       | 31361       | 31412       | 31463       | 31514 3       | 31565 3       | 31616 3       | 31667 3        | 31718 3        | 31769 3        | 31820 3        | 31871 31          | 31922 3        | 31973 32          | 32024 32          | 32075 32          | 32126 32          | 32177        |
| HIGH_OIL_SEAL_TEMP          | 04:input Register       | 31209       | 31260       | 31311       | 31362       | 31413       | 31464       | 31515 3       | 31566 3       | 31617 3       | 31668 3        | 31719 3        | 31770 3        | 31821 3        | 31872 31          | 31923 3        | 31974 32          | 32025 32          | 32076 32          | 32127 32          | 32178        |
| NO_CRANK_CASE_HEATER_PROOF  | 04:input Register       | 31210       | 31261       | 31312       | 31363       | 31414       | 31465       | 31516 3       | 31567 3       | 31618 3       | 31669 3        | 31720 3        | 31771 3        | 31822 3        | 31873 31          | 31924 3        | 31975 32          | 32026 32          | 32077 32          | 32128 32          | 32179        |
| HIGH_AMPS                   | 04:input Register       | 31211       | 31262       | 31313       | 31364       | 31415       | 31466       | 31517 3       | 31568 3       | 31619 3       | 31670 3        | 31721 3        | 31772 3        | 31823 3        | 31874 31          | 31925 3        | 31976 32          | 32027 32          | 32078 32          | 32129 32          | 32180        |
| LOW_AMPS                    | 04:input Register       | 31212       | 31263       | 31314       | 31365       | 31416       | 31467       | 31518 3       | 31569 3       | 31620 3       | 31671 3        | 31722 3        | 31773 3        | 31824 3        | 31875 31          | 31926 3        | 31977 32          | 32028 32          | 32079 32          | 32130 32          | 32181        |
| HIGH_MOTOR_TEMP             | 04:input Register       | 31213       | 31264       | 31315       | 31366       | 31417       | 31468       | 31519 3       | 31570 3       | 31621 3       | 31672 3        | 31723 3        | 31774 3        | 31825 3        | 31876 31          | 31927 3        | 31978 32          | 32029 32          | 32080 32          | 32131 32          | 32182        |
| NO_COMPRESSOR_PROOF         | 04:input Register       | 31214       | 31265       | 31316       | 31367       | 31418       | 31469       | 31520 3       | 31571 3       | 31622 3       | 31673 3        | 31724 3        | 31775 3        | 31826 3        | 31877 31          | 31928 3        | 31979 32          | 32030 32          | 32081 32          | 32132 32          | 32183        |
| LOW_OIL_SUPERHEAT           | 04:input Register       | 31215       | 31266       | 31317       | 31368       | 31419       | 31470       | 31521 3       | 31572 3       | 31623 3       | 31674 3        | 31725 3        | 31776 3        | 31827 3        | 31878 31          | 31929 3        | 31980 32          | 32031 32          | 32082 32          | 32133 32          | 32184        |
| PUMP_DOWN                   | 04:input Register       | 31216       | 31267       | 31318       | 31369       | 31420       | 31471       | 31522 3       | 31573 3       | 31624 3       | 31675 3        | 31726 3        | 31777 3        | 31828 3        | 31879 31          | 31930 3        | 31981 32          | 32032 32          | 32083 32          | 32134 32          | 32185        |
| LOW_DISCHARGE_PSI           | 04:input Register       | 31217       | 31268       | 31319       | 31370       | 31421       | 31472       | 31523 3       | 31574 3       | 31625 3       | 31676 3        | 31727 3        | 31778 3        | 31829 3        | 31880 31          | 31931 3        | 31982 32          | 32033 32          | 32084 32          | 32135 32          | 32186        |
| LUBE_OIL_TEMP               | 04:input Register       | 31218       | 31269       | 31320       | 31371       | 31422       | 31473       | 31524 3       | 31575 3       | 31626 3       | 31677 3        | 31728 3        | 31779 3        | 31830 3        | 31881 31          | 31932 3        | 31983 32          | 32034 32          | 32085 32          | 32136 32          | 32187        |
|                             | 04:input Register       | 31219       | 31270       | 31321       | 31372       | 31423       | 31474       | 31525 3       | 31576 3       | 31627 3       | 31678 3        | 31729 3        | 31780 3        | 31831 3        | 31882 31          | 31933 3        | 31984 32          | 32035 32          | 32086 32          | 32137 32          | 32188        |
| LUBE_OIL_TIME               | 04:input Register       | 31220       | 31271       | 31322       | 31373       | 31424       | 31475       | 31526 3       | 31577 3       | 31628 3       | 31679 3        | 31730 3        | 31781 3        | 31832 3        | 31883 31          | 31934 3        | 31985 32          | 32036 32          | 32087 32          | 32138 32          | 32189        |
| REFRIGERATION_LEAK          | 04:input Register       | 31221       | 31272       | 31323       | 31374       | 31425       | 31476       | 31527 3       | 31578 3       | 31629 3       | 31680 3        | 31731 3        | 31782 3        | 31833 3        | 31884 31          | 31935 3        | 31986 32          | 32037 32          | 32088 32          | 32139 32          | 32190        |
| LOW_REFRIGERATION_TEMP      | 04:input Register       | 31222       | 31273       | 31324       | 31375       | 31426       | 31477       | 31528 3       | 31579 3       | 31630 3       | 31681 3        | 31732 3        | 31783 3        | 31834 3        | 31885 31          | 31936 3        | 31987 32          | 32038 32          | 32089 32          | 32140 32          | 32191        |
| TO0_MANY_PURGES             | 04:input Register       | 31223       | 31274       | 31325       | 31376       | 31427       | 31478       | 31529 3       | 31580 3       | 31631 3       | 31682 3        | 31733 3        | 31784 3        | 31835 3        | 31886 31          | 31937 3        | 31988 32          | 32039 32          | 32090 32          | 32141 32          | 32192        |
| EXCESS_PURGING_TIME         | 04:input Register       | 31224       | 31275       | 31326       | 31377       | 31428       | 31479       | 31530 3       | 31581 3       | 31632 3       | 31683 3        | 31734 3        | 31785 3        | 31836 3        | 31887 31          | 31938 3        | 31989 32          | 32040 32          | 32091 32          | 32142 32          | 32193        |
| PURGE_FLOAT_ERROR           | 04:input Register       | 31225       | 31276       | 31327       | 31378       | 31429       | 31480       | 31531 3       | 31582 3       | 31633 3       | 31684 3        | 31735 3        | 31786 3        | 31837 3        | 31888 31          | 31939 3        | 31990 32          | 32041 32          | 32092 32          | 32143 32          | 32194        |
| LOW_DIFFERENTIAL_PSI_RATIO  | 04:input Register       | 31226       | 31277       | 31328       | 31379       | 31430       | 31481       | 31532 3       | 31583 3       | 31634 3       | 31685 3        | 31736 3        | 31787 3        | 31838 3        | 31889 31          | 31940 3        | 31991 32          | 32042 32          | 32093 32          | 32144 32          | 32195        |
| LOW_SUPERHEAT               | 04:input Register       | 31227       | 31278       | 31329       | 31380       | 31431       | 31482       | 31533 3       | 31584 3       | 31635 3       | 31686 3        | 31737 3        | 31788 3        | 31839 3        | 31890 31          | 31941 3        | 31992 32          | 32043 32          | 32094 32          | 32145 32          | 32196        |
| LOW_DISCHARGE_SUPERHEAT     | 04:input Register       | 31228       | 31279       | 31330       | 31381       | 31432       | 31483       | 31534 3       | 31585 3       | 31636 3       | 31687 3        | 31738 3        | 31789 3        | 31840 3        | 31891 31          | 31942 3        | 31993 32          | 32044 32          | 32095 32          | 32146 32          | 32197        |
| LOST_LEG_PART_WINDING       | 04:input Register       | 31229       | 31280       | 31331       | 31382       | 31433       | 31484       | 31535 3       | 31586 3       | 31637 3       | 31688 3        | 31739 3        | 31790 3        | 31841 3        | 31892 31          | 31943 3        | 31994 32          | 32045 32          | 32096 32          | 32147 32          | 32198        |
| HIGH_PARTS_PER_MILLION_LEAK | 04:input Register       | 31230       | 31281       | 31332       | 31383       | 31434       | 31485       | 31536 3       | 31587 3       | 31638 3       | 31689 3        | 31740 3        | 31791 3        | 31842 3        | 31893 31          | 31944 3        | 31995 32          | 32046 32          | 32097 32          | 32148 32          | 32199        |
| HIGH_REFRIGERATION_LEVEL    | 04:input Register       | 31231       | 31282       | 31333       | 31384       | 31435       | 31486       | 31537 3       | 31588 3       | 31639 3       | 31690 3        | 31741 3        | 31792 3        | 31843 3        | 31894 31          | 31945 3        | 31996 32          | 32047 32          | 32098 32          | 32149 32          | 32200        |
| LOW_OIL_LEVEL               | 04:input Register       | 31232       | 31283       | 31334       | 31385       | 31436       | 31487       | 31538 3       | 31589 3       | 31640 3       | 31691 3        | 31742 3        | 31793 3        | 31844 3        | 31895 31          | 31946 3        | 31997 32          | 32048 32          | 32099 32          | 32150 32          | 32201        |
| NO_FLOW                     | 04:input Register       | 31233       | 31284       | 31335       | 31386       | 31437       | 31488       | 31539 3       | 31590 3       | 31641 3       | 31692 3        | 31743 3        | 31794 3        | 31845 3        | 31896 31          | 31947 3        | 31998 32          | 32049 32          | 32100 32          | 32151 32          | 32202        |
| OIL_FLOW                    | 04:input Register       | 31234       | 31285       | 31285 31336 | 31387       | 31438       | 31489       | 31540 3       | 31591 3       | 31642 3       | 31693 3        | 31744 3        | 31795 3        | 31846 3        | 31897 31          | 31948 3        | 31999 32          | 32050 32          | 32101 32          | 32152 32          | 32203        |

|                                       |                         |             |             |             |             |             |             |               |               | Moc           | Modbus F       | Register       | er             |                |                |                |                |                |                |                |              |
|---------------------------------------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|
| Alarms                                | Modbus<br>Function Type | Comp.<br>#1 | Comp.<br>#2 | Comp.<br>#3 | Comp.<br>#4 | Comp.<br>#5 | Comp.<br>#6 | Comp. 0<br>#7 | Comp. (<br>#8 | Comp. (<br>#9 | Comp. (<br>#10 | Comp. 0<br>#11 | Comp. 0<br>#12 | Comp. C<br>#13 | Comp. 0<br>#14 | Comp. 0<br>#15 | Comp. C<br>#16 | Comp. 0<br>#17 | Comp. (<br>#18 | Comp. (<br>#19 | Comp.<br>#20 |
| COMPRESSOR_SPEED_FAULT                | 04:input Register       | 31235       | 31286       | 31337       | 31388       | 31439       | 31490       | 31541         | 31592         | 31643         | 31694          | 31745          | 31796          | 31847          | 31898          | 31949          | 32000 3        | 32051          | 32102          | 32153          | 32204        |
| LOW_TANDEM_SUPERHEAT                  | 04:input Register       | 31236       | 31287       | 31338       | 31389       | 31440       | 31491       | 31542         | 31593         | 31644         | 31695          | 31746          | 31797          | 31848          | 31899 3        | 31950 3        | 32001 3        | 32052          | 32103          | 32154          | 32205        |
| HIGH_TANDEM_SUPERHEAT                 | 04:input Register       | 31237       | 31288       | 31339       | 31390       | 31441       | 31492       | 31543         | 31594         | 31645         | 31696          | 31747          | 31798          | 31849          | 31900 3        | 31951          | 32002 3        | 32053          | 32104          | 32155          | 32206        |
| EXCESS_SURGES                         | 04:input Register       | 31238       | 31289       | 31340       | 31391       | 31442       | 31493       | 31544         | 31595         | 31646         | 31697          | 31748          | 31799          | 31850 3        | 31901 3        | 31952          | 32003 3        | 32054 (        | 32105          | 32156          | 32207        |
| HIGH_SUPERHEAT                        | 04:input Register       | 31239       | 31290       | 31341       | 31392       | 31443       | 31494       | 31545         | 31596         | 31647         | 31698          | 31749          | 31800          | 31851          | 31902 3        | 31953 3        | 32004 3        | 32055          | 32106          | 32157          | 32208        |
| Suction Temperature Sensor Fault      | 04:input Register       | 31240       | 31291       | 31342       | 31393       | 31444       | 31495       | 31546         | 31597         | 31648         | 31699          | 31750          | 31801          | 31852 3        | 31903 3        | 31954 3        | 32005 3        | 32056          | 32107          | 32158          | 32209        |
| Discharge Temperature Sensor Fault    | 04:input Register       | 31241       | 31292       | 31343       | 31394       | 31445       | 31496       | 31547         | 31598         | 31649         | 31700          | 31751          | 31802          | 31853 3        | 31904 3        | 31955          | 32006 3        | 32057          | 32108          | 32159          | 32210        |
| Suction Pressure Sensor Fault         | 04:input Register       | 31242       | 31293       | 31344       | 31395       | 31446       | 31497       | 31548         | 31599         | 31650         | 31701          | 31752          | 31803          | 31854 3        | 31905 3        | 31956          | 32007 3        | 32058          | 32109          | 32160          | 32211        |
| Discharge Pressure Sensor Fault       | 04:input Register       | 31243       | 31294       | 31345       | 31396       | 31447       | 31498       | 31549         | 31600         | 31651         | 31702          | 31753          | 31804          | 31855 3        | 31906 3        | 31957          | 32008 3        | 32059          | 32110          | 32161          | 32212        |
| Oil Pressure Sensor Sensor Fault      | 04:input Register       | 31244       | 31295       | 31346       | 31397       | 31448       | 31499       | 31550         | 31601         | 31652         | 31703          | 31754          | 31805          | 31856          | 31907 3        | 31958          | 32009 3        | 32060          | 32111          | 32162          | 32213        |
| Oil Temperature Sensor Fault          | 04:input Register       | 31245       | 31296       | 31347       | 31398       | 31449       | 31500       | 31551         | 31602         | 31653         | 31704          | 31755          | 31806          | 31857 3        | 31908          | 31959 3        | 32010 3        | 32061          | 32112          | 32163          | 32214        |
| Motor Temperature Sensor Fault        | 04:input Register       | 31246       | 31297       | 31348       | 31399       | 31450       | 31501       | 31552         | 31603         | 31654         | 31705          | 31756          | 31807          | 31858 3        | 31909 3        | 31960          | 32011 3        | 32062          | 32113          | 32164          | 32215        |
| Evap Refrigerant Temp. Sensor Fault   | 04:input Register       | 31247       | 31298       | 31349       | 31400       | 31451       | 31502       | 31553         | 31604         | 31655         | 31706          | 31757          | 31808          | 31859 3        | 31910 3        | 31961          | 32012 3        | 32063          | 32114          | 32165          | 32216        |
| Evap Refrigerant Level Sensor Fault   | 04:input Register       | 31248       | 31299       | 31350       | 31401       | 31452       | 31503       | 31554         | 31605         | 31656         | 31707          | 31758          | 31809          | 31860 3        | 31911 3        | 31962 3        | 32013 3        | 32064          | 32115          | 32166          | 32217        |
| Oil Seal Temperature Sensor Fault     | 04:input Register       | 31249       | 31300       | 31351       | 31402       | 31453       | 31504       | 31555         | 31606         | 31657         | 31708          | 31759          | 31810          | 31861          | 31912 3        | 31963 3        | 32014 3        | 32065          | 32116          | 32167          | 32218        |
| Pre-Oil Filter Presssure Sensor Fault | 04:input Register       | 31250       | 31301       | 31352       | 31403       | 31454       | 31505       | 31556         | 31607         | 31658         | 31709          | 31760          | 31811          | 31862 3        | 31913 3        | 31964 3        | 32015 3        | 32066          | 32117          | 32168          | 32219        |
| Circuit Leaving Water Sensor Fault    | 04:input Register       | 31251       | 31302       | 31353       | 31404       | 31455       | 31506       | 31557         | 31608         | 31659         | 31710          | 31761          | 31812          | 31863 3        | 31914 3        | 31965 3        | 32016 3        | 32067          | 32118          | 32169          | 32220        |
|                                       |                         |             |             |             |             |             |             |               |               |               |                |                |                |                |                |                |                |                |                |                |              |

|                             |                       |             |             |             |            |             |             |             |             | acnet         | Obje         | Bacnet Object Identifier | htifier |              |                 |                |                |                   |                   |                   |              |
|-----------------------------|-----------------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|---------------|--------------|--------------------------|---------|--------------|-----------------|----------------|----------------|-------------------|-------------------|-------------------|--------------|
| Alarms                      | Bacnet Object<br>Type | Comp.<br>#1 | Comp.<br>#2 | Comp.<br>#3 | fomp.<br># | Comp.<br>#5 | Comp.<br>#6 | Comp.<br>#7 | Comp.<br>#8 | Comp. (<br>#9 | Comp.<br>#10 | Comp. 6<br>#11           |         | Comp.<br>#13 | Comp. (0<br>#14 | Comp. (<br>#15 | Comp. C<br>#16 | Comp. Cc<br>#17 # | Comp. Cc<br>#18 # | Comp. Cc<br>#19 # | Comp.<br>#20 |
| LOW_SUCTION                 | Analog Value          | 1396        | 1447        | 1498        | 1549       | 1600        | 1651        | 1702        | 1753        | 1804          | 1855         | 1906                     | 1957    | 2008         | 2059            | 2110           | 2161           | 2212 2            | 2263 2:           | 2314 2            | 2365         |
| UNSAFE_SUCTION              | Analog Value          | 1397        | 1448        | 1499        | 1550       | 1601        | 1652        | 1703        | 1754        | 1805          | 1856         | 1907                     | 1958    | 2009         | 2060            | 2111           | 2162           | 2213 2            | 2264 2:           | 2315 2            | 2366         |
| HIGH_DISCHARGE_PSI          | Analog Value          | 1398        | 1449        | 1500        | 1551       | 1602        | 1653        | 1704        | 1755        | 1806          | 1857         | 1908                     | 1959    | 2010         | 2061            | 2112           | 2163           | 2214 2            | 2265 23           | 2316 2            | 2367         |
| HIGH_DISCHARGE_TEMP         | Analog Value          | 1399        | 1450        | 1501        | 1552       | 1603        | 1654        | 1705        | 1756        | 1807          | 1858         | 1909                     | 1960    | 2011         | 2062            | 2113           | 2164           | 2215 2            | 2266 2:           | 2317 2            | 2368         |
| LOW_OIL_PSI                 | Analog Value          | 1400        | 1451        | 1502        | 1553       | 1604        | 1655        | 1706        | 1757        | 1808          | 1859         | 1910                     | 1961    | 2012         | 2063            | 2114           | 2165           | 2216 2            | 2267 23           | 2318 2            | 2369         |
| UNSAFE_OIL_PSI              | Analog Value          | 1401        | 1452        | 1503        | 1554       | 1605        | 1656        | 1707        | 1758        | 1809          | 1860         | 1911                     | 1962    | 2013         | 2064            | 2115           | 2166           | 2217 2            | 2268 23           | 2319 2            | 2370         |
| HIGH_OIL_TEMP               | Analog Value          | 1402        | 1453        | 1504        | 1555       | 1606        | 1657        | 1708        | 1759        | 1810          | 1861         | 1912                     | 1963    | 2014         | 2065            | 2116           | 2167           | 2218 2            | 2269 2;           | 2320 23           | 2371         |
| DIRTY_OIL_FILTER            | Analog Value          | 1403        | 1454        | 1505        | 1556       | 1607        | 1658        | 1709        | 1760        | 1811          | 1862         | 1913                     | 1964    | 2015         | 2066            | 2117           | 2168           | 2219 2            | 2270 2;           | 2321 2            | 2372         |
| HIGH_OIL_SEAL_TEMP          | Analog Value          | 1404        | 1455        | 1506        | 1557       | 1608        | 1659        | 1710        | 1761        | 1812          | 1863         | 1914                     | 1965    | 2016         | 2067            | 2118           | 2169           | 2220 2            | 2271 2;           | 2322 23           | 2373         |
| NO_CRANK_CASE_HEATER_PROOF  | Analog Value          | 1405        | 1456        | 1507        | 1558       | 1609        | 1660        | 1711        | 1762        | 1813          | 1864         | 1915                     | 1966    | 2017         | 2068            | 2119           | 2170           | 2221 2            | 2272 2;           | 2323 2            | 2374         |
| HIGH_AMPS                   | Analog Value          | 1406        | 1457        | 1508        | 1559       | 1610        | 1661        | 1712        | 1763        | 1814          | 1865         | 1916                     | 1967    | 2018         | 2069            | 2120           | 2171           | 2222 2            | 2273 2:           | 2324 23           | 2375         |
| LOW_AMPS                    | Analog Value          | 1407        | 1458        | 1509        | 1560       | 1611        | 1662        | 1713        | 1764        | 1815          | 1866         | 1917                     | 1968    | 2019         | 2070            | 2121           | 2172           | 2223 2            | 2274 2;           | 2325 2            | 2376         |
| HIGH_MOTOR_TEMP             | Analog Value          | 1408        | 1459        | 1510        | 1561       | 1612        | 1663        | 1714        | 1765        | 1816          | 1867         | 1918                     | 1969    | 2020         | 2071            | 2122           | 2173           | 2224 2            | 2275 23           | 2326 23           | 2377         |
| NO_COMPRESSOR_PROOF         | Analog Value          | 1409        | 1460        | 1511        | 1562       | 1613        | 1664        | 1715        | 1766        | 1817          | 1868         | 1919                     | 1970    | 2021         | 2072            | 2123           | 2174           | 2225 2            | 2276 23           | 2327 2            | 2378         |
| LOW_OIL_SUPERHEAT           | Analog Value          | 1410        | 1461        | 1512        | 1563       | 1614        | 1665        | 1716        | 1767        | 1818          | 1869         | 1920                     | 1971    | 2022         | 2073            | 2124           | 2175           | 2226 2            | 2277 23           | 2328 23           | 2379         |
|                             | Analog Value          | 1411        | 1462        | 1513        | 1564       | 1615        | 1666        | 1717        | 1768        | 1819          | 1870         | 1921                     | 1972    | 2023         | 2074            | 2125           | 2176           | 2227 2            | 2278 23           | 2329 2            | 2380         |
| LOW_DISCHARGE_PSI           | Analog Value          | 1412        | 1463        | 1514        | 1565       | 1616        | 1667        | 1718        | 1769        | 1820          | 1871         | 1922                     | 1973    | 2024         | 2075            | 2126           | 2177           | 2228 2            | 2279 23           | 2330 2            | 2381         |
| LUBE_OIL_TEMP               | Analog Value          | 1413        | 1464        | 1515        | 1566       | 1617        | 1668        | 1719        | 1770        | 1821          | 1872         | 1923                     | 1974    | 2025         | 2076            | 2127           | 2178           | 2229 2            | 2280 23           | 2331 2            | 2382         |
| LUBE_OIL_PSI                | Analog Value          | 1414        | 1465        | 1516        | 1567       | 1618        | 1669        | 1720        | 1771        | 1822          | 1873         | 1924                     | 1975    | 2026         | 2077            | 2128           | 2179           | 2230 2            | 2281 2:           | 2332 2            | 2383         |
| LUBE_OIL_TIME               | Analog Value          | 1415        | 1466        | 1517        | 1568       | 1619        | 1670        | 1721        | 1772        | 1823          | 1874         | 1925                     | 1976    | 2027         | 2078            | 2129           | 2180           | 2231 2            | 2282 2;           | 2333 2            | 2384         |
| REFRIGERATION_LEAK          | Analog Value          | 1416        | 1467        | 1518        | 1569       | 1620        | 1671        | 1722        | 1773        | 1824          | 1875         | 1926                     | 1977    | 2028         | 2079            | 2130           | 2181           | 2232 2            | 2283 2:           | 2334 2            | 2385         |
| LOW_REFRIGERATION_TEMP      | Analog Value          | 1417        | 1468        | 1519        | 1570       | 1621        | 1672        | 1723        | 1774        | 1825          | 1876         | 1927                     | 1978    | 2029         | 2080            | 2131           | 2182           | 2233 2            | 2284 2:           | 2335 2            | 2386         |
| TOO_MANY_PURGES             | Analog Value          | 1418        | 1469        | 1520        | 1571       | 1622        | 1673        | 1724        | 1775        | 1826          | 1877         | 1928                     | 1979    | 2030         | 2081            | 2132           | 2183           | 2234 2            | 2285 2:           | 2336 2            | 2387         |
| EXCESS_PURGING_TIME         | Analog Value          | 1419        | 1470        | 1521        | 1572       | 1623        | 1674        | 1725        | 1776        | 1827          | 1878         | 1929                     | 1980    | 2031         | 2082            | 2133           | 2184           | 2235 2            | 2286 2:           | 2337 2            | 2388         |
| PURGE_FLOAT_ERROR           | Analog Value          | 1420        | 1471        | 1522        | 1573       | 1624        | 1675        | 1726        | 1777        | 1828          | 1879         | 1930                     | 1981    | 2032         | 2083            | 2134           | 2185           | 2236 2            | 2287 2:           | 2338 2            | 2389         |
| LOW_DIFFERENTIAL_PSI_RATIO  | Analog Value          | 1421        | 1472        | 1523        | 1574       | 1625        | 1676        | 1727        | 1778        | 1829          | 1880         | 1931                     | 1982    | 2033         | 2084            | 2135           | 2186           | 2237 2            | 2288 2;           | 2339 2            | 2390         |
| LOW_SUPERHEAT               | Analog Value          | 1422        | 1473        | 1524        | 1575       | 1626        | 1677        | 1728        | 1779        | 1830          | 1881         | 1932                     | 1983    | 2034         | 2085            | 2136           | 2187           | 2238 2            | 2289 2:           | 2340 23           | 2391         |
| LOW_DISCHARGE_SUPERHEAT     | Analog Value          | 1423        | 1474        | 1525        | 1576       | 1627        | 1678        | 1729        | 1780        | 1831          | 1882         | 1933                     | 1984    | 2035         | 2086            | 2137           | 2188           | 2239 2            | 2290 2:           | 2341 2            | 2392         |
| LOST_LEG_PART_WINDING       | Analog Value          | 1424        | 1475        | 1526        | 1577       | 1628        | 1679        | 1730        | 1781        | 1832          | 1883         | 1934                     | 1985    | 2036         | 2087            | 2138           | 2189           | 2240 2            | 2291 2:           | 2342 2            | 2393         |
| HIGH_PARTS_PER_MILLION_LEAK | Analog Value          | 1425        | 1476        | 1527        | 1578       | 1629        | 1680        | 1731        | 1782        | 1833          | 1884         | 1935                     | 1986    | 2037         | 2088            | 2139           | 2190           | 2241 2            | 2292 2:           | 2343 2            | 2394         |
| HIGH_REFRIGERATION_LEVEL    | Analog Value          | 1426        | 1477        | 1528        | 1579       | 1630        | 1681        | 1732        | 1783        | 1834          | 1885         | 1936                     | 1987    | 2038         | 2089            | 2140           | 2191           | 2242 2            | 2293 2:           | 2344 2            | 2395         |
| LOW_OIL_LEVEL               | Analog Value          | 1427        | 1478        | 1529        | 1580       | 1631        | 1682        | 1733        | 1784        | 1835          | 1886         | 1937                     | 1988    | 2039         | 2090            | 2141           | 2192           | 2243 2            | 2294 2;           | 2345 2            | 2396         |
| NO_FLOW                     | Analog Value          | 1428        | 1479        | 1530        | 1581       | 1632        | 1683        | 1734        | 1785        | 1836          | 1887         | 1938                     | 1989    | 2040         | 2091            | 2142           | 2193           | 2244 2            | 2295 2;           | 2346 2            | 2397         |
| OIL_FLOW                    | Analog Value          | 1429        | 1480        | 1531        | 1582       | 1633        | 1684        | 1735        | 1786        | 1837          | 1888         | 1939                     | 1990    | 2041         | 2092            | 2143           | 2194           | 2245 2            | 2296 2:           | 2347 2            | 2398         |

|                                       |                       |             |             |                             |      |             |             |             | ш           | acnet         | Bacnet Object Identifier | t Iden         | tifier         |                |                |                |                |                |                |                |              |
|---------------------------------------|-----------------------|-------------|-------------|-----------------------------|------|-------------|-------------|-------------|-------------|---------------|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|
| Alarms                                | Bacnet Object<br>Type | Comp.<br>#1 | Comp.<br>#2 | Comp. Comp. Com<br>#2 #3 #4 | å    | Comp.<br>#5 | Comp.<br>#6 | Comp.<br>#7 | Comp.<br>#8 | Comp. (<br>#9 | Comp. 0<br>#10           | Comp. 0<br>#11 | Comp. C<br>#12 | Comp. C<br>#13 | Comp. C<br>#14 | Comp. 0<br>#15 | Comp. 0<br>#16 | Comp. 0<br>#17 | Comp. 0<br>#18 | Comp. C<br>#19 | Comp.<br>#20 |
| COMPRESSOR_SPEED_FAULT                | Analog Value          | 1430        | 1481        | 1532                        | 1583 | 1634        | 1685        | 1736        | 1787        | 1838          | 1889                     | 1940           | 1991           | 2042           | 2093           | 2144           | 2195           | 2246           | 2297           | 2348           | 2399         |
| LOW_TANDEM_SUPERHEAT                  | Analog Value          | 1431        | 1482        | 1533                        | 1584 | 1635        | 1686        | 1737        | 1788        | 1839          | 1890                     | 1941           | 1992           | 2043           | 2094           | 2145           | 2196           | 2247           | 2298           | 2349           | 2400         |
| HIGH_TANDEM_SUPERHEAT                 | Analog Value          | 1432        | 1483        | 1534                        | 1585 | 1636        | 1687        | 1738        | 1789        | 1840          | 1891                     | 1942           | 1993           | 2044           | 2095           | 2146           | 2197           | 2248           | 2299           | 2350           | 2401         |
| EXCESS_SURGES                         | Analog Value          | 1433        | 1484        | 1535                        | 1586 | 1637        | 1688        | 1739        | 1790        | 1841          | 1892                     | 1943           | 1994           | 2045           | 2096           | 2147           | 2198           | 2249           | 2300           | 2351           | 2402         |
| HIGH_SUPERHEAT                        | Analog Value          | 1434        | 1485        | 1536                        | 1587 | 1638        | 1689        | 1740        | 1791        | 1842          | 1893                     | 1944           | 1995           | 2046           | 2097   :       | 2148           | 2199           | 2250           | 2301           | 2352           | 2403         |
| Suction Temperature Sensor Fault      | Analog Value          | 1435        | 1486        | 1537                        | 1588 | 1639        | 1690        | 1741        | 1792        | 1843          | 1894                     | 1945           | 1996           | 2047           | 2098           | 2149           | 2200           | 2251           | 2302           | 2353           | 2404         |
| Discharge Temperature Sensor Fault    | Analog Value          | 1436        | 1487        | 1538                        | 1589 | 1640        | 1691        | 1742        | 1793        | 1844          | 1895                     | 1946           | 1997           | 2048           | 2099 3         | 2150           | 2201           | 2252           | 2303           | 2354           | 2405         |
| Suction Pressure Sensor Fault         | Analog Value          | 1437        | 1488        | 1539                        | 1590 | 1641        | 1692        | 1743        | 1794        | 1845          | 1896                     | 1947           | 1998           | 2049           | 2100 3         | 2151           | 2202           | 2253           | 2304           | 2355           | 2406         |
| Discharge Pressure Sensor Fault       | Analog Value          | 1438        | 1489        | 1540                        | 1591 | 1642        | 1693        | 1744        | 1795        | 1846          | 1897                     | 1948           | 1999           | 2050 2         | 2101           | 2152           | 2203           | 2254           | 2305           | 2356           | 2407         |
| Oil Pressure Sensor Sensor Fault      | Analog Value          | 1439        | 1490        | 1541                        | 1592 | 1643        | 1694        | 1745        | 1796        | 1847          | 1898                     | 1949           | 2000           | 2051 2         | 2102           | 2153           | 2204           | 2255           | 2306           | 2357           | 2408         |
| Oil Temperature Sensor Fault          | Analog Value          | 1440        | 1491        | 1542                        | 1593 | 1644        | 1695        | 1746        | 1797        | 1848          | 1899                     | 1950           | 2001           | 2052 2         | 2103 3         | 2154           | 2205           | 2256           | 2307           | 2358           | 2409         |
| Motor Temperature Sensor Fault        | Analog Value          | 1441        | 1492        | 1543                        | 1594 | 1645        | 1696        | 1747        | 1798        | 1849          | 1900                     | 1951           | 2002           | 2053 2         | 2104           | 2155           | 2206           | 2257           | 2308           | 2359           | 2410         |
| Evap Refrigerant Temp. Sensor Fault   | Analog Value          | 1442        | 1493        | 1544                        | 1595 | 1646        | 1697        | 1748        | 1799        | 1850          | 1901                     | 1952           | 2003           | 2054           | 2105 3         | 2156           | 2207           | 2258           | 2309           | 2360           | 2411         |
| Evap Refrigerant Level Sensor Fault   | Analog Value          | 1443        | 1494        | 1545                        | 1596 | 1647        | 1698        | 1749        | 1800        | 1851          | 1902                     | 1953           | 2004           | 2055 2         | 2106           | 2157           | 2208           | 2259           | 2310           | 2361           | 2412         |
| Oil Seal Temperature Sensor Fault     | Analog Value          | 1444        | 1495        | 1546                        | 1597 | 1648        | 1699        | 1750        | 1801        | 1852          | 1903                     | 1954           | 2005           | 2056           | 2107 3         | 2158           | 2209           | 2260           | 2311           | 2362           | 2413         |
| Pre-Oil Filter Presssure Sensor Fault | Analog Value          | 1445        | 1496        | 1547                        | 1598 | 1649        | 1700        | 1751        | 1802        | 1853          | 1904                     | 1955           | 2006           | 2057 3         | 2108           | 2159           | 2210           | 2261           | 2312           | 2363           | 2414         |
| Circuit Leaving Water Sensor Fault    | Analog Value          | 1446        | 1497        | 1548                        | 1599 | 1650        | 1701        | 1752        | 1803        | 1854          | 1905                     | 1956           | 2007           | 2058           | 2109           | 2160           | 2211           | 2262           | 2313           | 2364           | 2415         |
|                                       |                       |             |             |                             |      |             |             |             |             |               |                          |                |                |                |                |                |                |                |                |                |              |


#### **33.9. Network inputs to MCS-Magnum**

The MCS-Magnum can receive changes from the network to enable or disable the Network Run/Stop, Network Target Reset (adjustments to the Cooling Target, Setpoint #1, based on Setpoint #21), Network Demand FLA, and Network Demand Steps.

The MCS-Magnum must be setup to accept these inputs. The configuration file must contain a Network Run/Stop, Network Target, Network Demand FLA, and Network Demand Steps sensors.

| Magnum               | BACnet ID | BACnet Name     | Modbus | N2     |
|----------------------|-----------|-----------------|--------|--------|
| Network Run/Stop     | AV:246    | Net_R/S         | 40201  | BO:247 |
| Network Target/Reset | AV:247    | Net_Tar/Res     | 40202  | AO:248 |
| Network Demand/FLA   | AV:248    | Net_Demad_FLA   | 40204  | AO:249 |
| Network Demand/Steps | AV:249    | Net_Demad_Steps | 40205  | AO:250 |

Note the following Information panel has a Network Run/Stop, and /or Network Target Reset sensors inputs indicated. This is an example of how MCS-Config must be setup in the General Information and Evaporator Information panels.



The sensors must be set up as follows (This is only an example)

| 1-1 BMS R/S  | BMS RUN      | Not Used | Open=OFF | OFF/ON   | Not Used | Not Used | Auto |
|--------------|--------------|----------|----------|----------|----------|----------|------|
| 1-2 BMS TRS  | BMS CW RSET  | 0        | 0        | Not Used | Not Used | Not Used | Auto |
| 1-3 BMSFLA   | BMS Dmd FLA% | 0        | 0        | Not Used | Not Used | Not Used | Auto |
| 1-4 BMSSteps | BMS Dmd Step | 0        | 0        | Not Used | Not Used | Not Used | Auto |

#### 33.10. MCS-BMS-GATEWAY PROTOCOLS (over Ethernet - Modbus RTU)

The following Protocols are available with the Magnum. Changes can be made to the settings using the Keypad or can be made using MCS-CONNECT SERVICE WINDOW.

- BACnet MS/IP (using MCS-BMS-GATEWAY)
- Johnson N2 (using MCS-BMS-GATEWAY)
- Modbus RTU to Modbus TCP/IP (using MCS-BMS-GATEWAY)
- Modbus RTU / BACnet IP (using MCS-BMS-GATEWAY)
- LonTalk (using MCS-BMS-GATEWAY)

The BACNET DEVICE ID is a five-digit number. The first three digits are based on MCS's Bacnet Vendor ID <u>181</u>, and the last two are set by the Bacnet/MSTP address.

| <u>181</u>   | <u>XX</u>    |
|--------------|--------------|
| $\downarrow$ | $\downarrow$ |
| Bacnet       | Bacnet IP    |
| MCS181       | Address      |

In case the end user would like to set up an ID other than 181-XX, there is an extended BACnet setting that can only be set in MCS Config.

# The following changes can be made using the Keypad or can be made using MCS-CONNECT SERVICE WINDOW.

The **BACnet IP** address can be verified and changed (with the proper authorization code) from the Keypad/LCD.

The following steps will display the Bacnet IP Network address, and the the TCP/IP port:

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Use ★ arrow to **BACnet Setting** then press Enter.
- Select address then press Enter. Change the address so it matches the last two digits of the device ID then press Enter.
- Use **↓** arrow to tab to the TCP/IP address.
- Select address then press Enter. Change the address and port to match your device.

#### 33.10.1 ETHERNET NETWORK PROTOCOL

The following steps will display the ETHERNET NETWORK settings:

If you are going to manually assign the IP Address, Subnet Mask, and Default Gateway.

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to NO.
- Set the "IP Address".
- Set the "Subnet Mask".
- Set "Default Gateway".
- Reset Magnum for change to take effect.

If you are going to let your network assign the IP Address, Subnet Mask, and Default Gateway:

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to YES.
- Connect the MCS-Magnum to the network and power up the board.

#### 33.10.2 MODBUS RTU PROTOCOL

The Modbus RTU address can be verified and changed (with the proper authorization code) from the keypad/LCD or can be made using MCS-CONNECT SERVICE WINDOW.

The following steps will display the Modbus RTU Network address, and the Baud Rate:

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Select RS485 Network then press Enter.
- Select Protocol then press Enter. Change the protocol to Modbus RTU.
- Select address then press Enter. Change the address then press Enter.
- Select Baud then press Enter. Set the baud rate then press Enter.
- Connect the communication wires to the TX RS485 three-position terminal located above the Ethernet connector.
- Reset Magnum for change to take effect.
- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to NO.
- Set the "IP Address".
- Set the "Subnet Mask".
- Set "Default Gateway".
- Reset Magnum for change to take effect.

If you are going to let your network assign the IP Address, Subnet Mask, and Default Gateway:

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to YES.
- Connect the MCS-Magnum to the network and power up the board.

#### 33.11. PROTOCOLS USING MCS-BMS-GATEWAY

The MCS-BMS-GATEWAY is a microprocessor based communication device that provides translation from BACnet IP to LonTalk, BACnet MSTP, or Johnson Control N2.

Information that can be transmitted includes the status of control points, alarm information, digital inputs, analog inputs or setpoints.

For more information on the MCS-BMS-GATEWAY please go to www.MCScontrols.com.

#### 33.11.1 MODBUS TCP/IP PROTOCOL

#### This protocol is always active.

Make sure the MCS-Magnum network settings are set correctly.

*If you are going to manually assign the IP Address, Subnet Mask, and Default Gateway.* Press the Menu key, select Serv Tools, and then press the Enter key.

- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to NO.
- Set the "IP Address".
- Set the "Subnet Mask".
- Set "Default Gateway".
- Reset Magnum for change to take effect.

If you are going to let your network assign the IP Address, Subnet Mask, and Default Gateway:

- Press the Menu key, select Serv Tools, and then press the Enter key.
- Select Ethernet Network then press Enter.
- Set "DYNAMIC IP" to YES.
- Connect the MCS-Magnum to the network and power up the board.

#### 33.12. PROTOCOLS USING MCS-BMS-GATEWAY

The MCS-BMS-GATEWAY is a microprocessor based communication device that provides translation from BACnet IP to LonTalk, BACnet MSTP, or Johnson Control N2.

Information that can be transmitted includes the status of control points, alarm information, digital inputs, analog inputs or setpoints.

For more information on the MCS-BMS-GATEWAY please go to www.MCScontrols.com.

## Chapter - 34. Network Protocols

Network protocols are formatting rules that specify how data is sent and received between devices. Protocols are necessary for devices to interact with each other.

#### **34.1. Protocols MCS controllers support:**

- BACnet MS/IP
- Johnson N2
- Modbus RTU / Modbus TCP/IP
- Modbus RTU / BACnet IP
- LonTalk

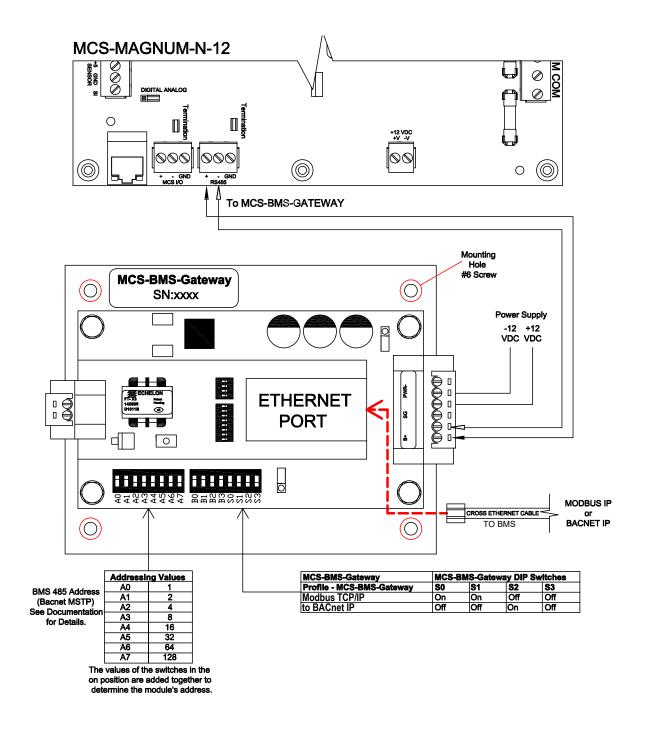
The MCS-BMS-GATEWAY is a microprocessor based communication device that provides translation from Modbus RTU to BACnet IP, Modbus RTU to Modbus TCP/IP, BACnet MS/TP, Johnson Control N2 or LonTalk.

Information that can be transmitted includes the status of control points, alarm information, digital inputs, analog inputs or setpoints.

Network protocols are formatting rules that specify how data is sent and received between devices. Protocols are necessary for devices to interact with each other.

#### 34.1.1 **Protocols MCS controllers support:**

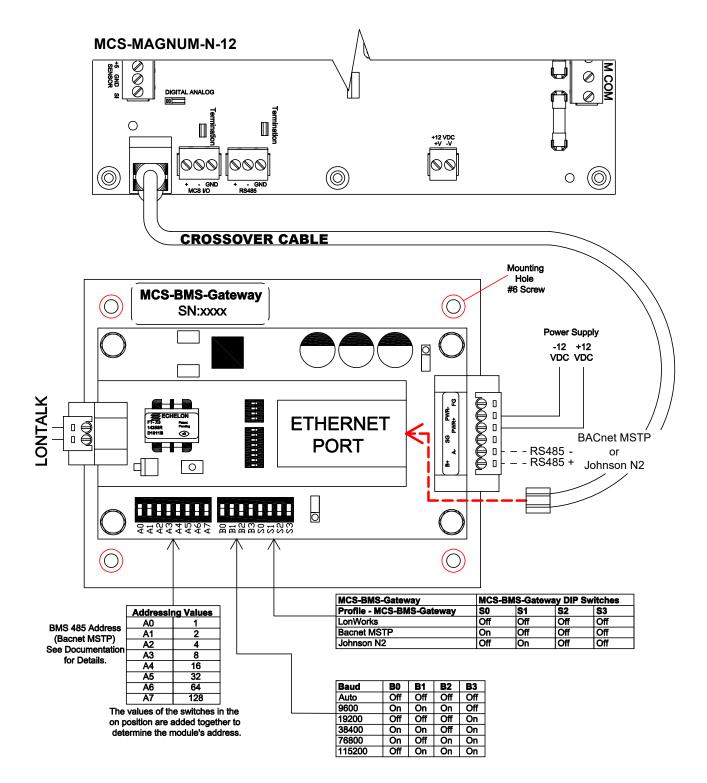



| МС           | S Network Protoco | ol Support         |
|--------------|-------------------|--------------------|
|              | MAGNUM            | MicroMag           |
| BACnet IP    | MCS-BMS-Gateway   | MCS-Bacnet-Router2 |
| Modbus IP    | MCS-BMS-Gateway   | MCS-BMS-Gateway    |
| MCS IP       | $\checkmark$      | MCS-Ethernet-RS485 |
| Modbus RTU   | $\checkmark$      | $\checkmark$       |
| MCS 485      | $\checkmark$      | $\checkmark$       |
| BACnet MS/TP | MCS-BMS-Gateway   | $\checkmark$       |
| Johnson N2   | MCS-BMS-Gateway   | MCS-BMS-Gateway    |
| LonTalk      | MCS-BMS-Gateway   | MCS-BMS-Gateway    |
|              |                   |                    |

## **Chapter - 35. WIRING MCS-BMS GATEWAY**

### WIRING BACnet IP OR MODBUS IP TO BMS OVER ETHERNET

In this configuration the MCS-BMS-GATEWAY provides Ethernet RJ45 Cat5 connection to the BMS using BACnet IP or Modbus IP.

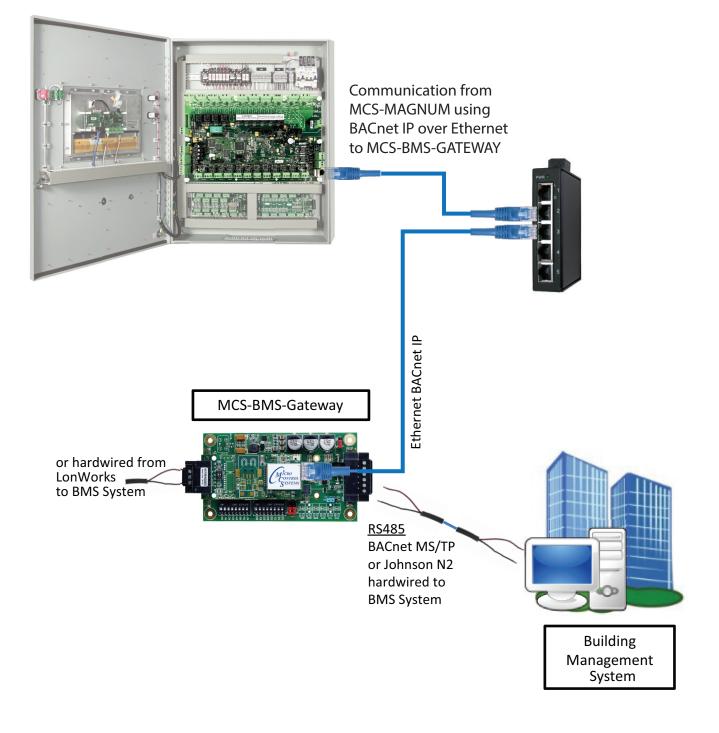

The MCS-BMS-GATEWAY in this configuration connects to the MCS-MAGNUM RS485 port, using MODBUS RTU protocol with baud rate of 9600, Modbus slave 1.



### Wiring BACnet MSTP, Johnson N2, or LonTalk to BMS

In this configuration the MCS-BMS-GATEWAY provides a RS485 port for BACnet MSTP or Johnson N2 and uses the port for LonTalk as shown in the drawing below.

The MCS-BMS-GATEWAY in this configuration connects to the MCS-MAGNUM using a Ethernet RJ45 Cat5 connection talking BACnet IP.




MCS-BMS-GATEWAY Wiring Diagram S:Products/MCS-BMS-GATEWAY/Drawings 7-19-2023-dew

#### **35.1. EXAMPLE NETWORK**

#### 35.1.1 Standalone MCS-Magnum (using Modbus RTU Protocol)

- MCS INDUSTRIAL CONTROL PANEL with a MCS-MAGNUM controller using an Ethernet cable to communicate to the MCS-BMS-GATEWAY over BACnet IP.
- MCS-BMS-GATEWAY hardwired to BMS Management System using:
  - 1. BACnet MS/TP protocol or
  - 2. Johnston N2 protocol or
  - 3. LonTalk protocol using the LonWorks port



## Chapter - 36. MODBUS RTU

Modbus RTU is supported directly by the Magnum using the RS485 port.

Please note this is the same port you plug into the RS232, so if using Modbus RTU you cannot plug you laptop into RS232 port on the older keypad.

Please note the RS485 follows industry standard, two wire twisted pair in shielded cable.

#### **36.1. Setup the Modbus from MCS-Config's Magnum Setup Screen(see below):**

| 🖻 😫 🖨 Sys       | stem Setur                      | ROs        | Sls            | AOs      |        | MAG RTU               | Circuit Base                 | Circuit SI           | Setpoints                   | Auth                  | Schedule B              |
|-----------------|---------------------------------|------------|----------------|----------|--------|-----------------------|------------------------------|----------------------|-----------------------------|-----------------------|-------------------------|
|                 |                                 |            |                | MA       | GN     | JM Setup              | Screer                       | ı                    |                             |                       |                         |
| Display Un      | nits De                         | g F / PSI  |                |          | •      | Total Numb            | er of RO's                   | 30                   |                             |                       | Spare ROs               |
| Default LCD D   | Display UN                      | IT STATU   | JS             |          | •      | Total Numb            | er of AO's                   | 17                   |                             |                       | Spare AOs               |
| Default Display | y Point                         |            |                |          |        | Total Numb            | er of SI's                   | 81                   |                             |                       | Spare SIs               |
|                 |                                 |            |                |          |        | Number of F           | O Boards                     | 1                    |                             |                       |                         |
| Max Lockout     | t Resets pe                     | er Day     | 6              |          | •      | Number of S           | 116 boards                   | 3                    |                             |                       |                         |
| Auth Level E    | Bypass S                        | Supervisor | Level          |          | •      | Tyr                   | e of I/O Boa                 | arde                 |                             | ACS-Th                | ermostat                |
| Lockout Re      | set SI                          | lot Used   |                |          | •      | C RO-8 & S<br>MCS I/O |                              | RO-10 &<br>SI-16-AO4 |                             | Yes                   | No                      |
| History Samp    | ole Rate (S                     | econds)    | 90             |          |        |                       |                              | Factory St           | artup                       |                       |                         |
|                 | Keypad Cur<br>Yes<br>arm for No |            | 🖲 No           |          | 20     | Enable<br>O Ye        | This Featur<br>s • No        |                      |                             | e Is Acti<br>ord Ente |                         |
|                 | Yes                             |            | No             | romzatic |        |                       | F                            | Run Hour L           | ockout                      |                       |                         |
| Display Alarn   | Yes<br>n Characte               | r(a) On K  | No<br>leypad L |          |        | Enable<br>O Ye        | This Featur<br>s             |                      | Feature<br>(Passwo<br>O Yes |                       |                         |
|                 | Yes                             |            | • No           | Davli    | aht Sa | avings Time           | Spring                       | Forward N            | Month                       | March                 |                         |
|                 |                                 |            |                |          |        |                       |                              | orward Beg           |                             | 8                     |                         |
| Daylight Say    | vings Time                      | Active     | • Ye           | s 🔿 l    | No     | Reset to              |                              | Forward En           |                             | 14                    |                         |
| Daylight Sa     | avings Time                     | DOW        | Sunda          | у        | •      | U.S.A<br>Daylight     | Fal                          | I Back Mor           | ith                         | Novem                 | ber 🔻                   |
| Daylight Sa     | avings Time                     | e Hour     | 2              |          | •      | Savings               | Fall B                       | ack Begin            | Duto                        | 1                     | •                       |
|                 |                                 |            |                |          |        |                       | Fall                         | Back End D           | Date                        | 7                     | <b>_</b>                |
|                 | <u>RS485 (</u>                  | Communic   | ation          |          |        | _                     | Ethe<br>Static               | ernet Comm<br>IP     | _                           | amic IP               |                         |
| RTU Protoc      | ol Address                      | ; 1        | -              |          |        |                       | ddress                       |                      | 168 10                      | 25                    | 3                       |
|                 |                                 |            |                |          |        |                       | et Mask                      |                      | 255 25<br>168 10            | 5 0                   | _                       |
| Protoco         | ol Type                         | MODBU      | SRIU           |          | •      |                       | i Gateway<br>IP Port         | 5001                 |                             |                       |                         |
| Baud            | Rate                            | 9600       |                |          | •      |                       | Device ID                    | 181 02               | BACn                        | et Port               | 47 808                  |
| Slave A         | ddress:                         | 1          |                |          |        | Extend                | ed BACnet [                  | Device ID            |                             |                       | Port Numbers            |
|                 | Alarm Grid<br>ICS-Conne         |            | י ו            | Yes 🖲    | No     |                       | .11 to Preser<br>V Values St |                      | v v                         |                       | Port = 502<br>Port = 80 |
|                 |                                 |            |                | System ( | Graphi | ic Information        |                              |                      |                             | 5110                  |                         |
| Name of Grap    | ohic .html fil                  | e:C://MC   | _              |          |        | 4/SystemOver          | view.html                    |                      |                             |                       |                         |

| RS485 BACI | NET Ethernet Graphics Site Info SI Diag. |
|------------|------------------------------------------|
|            | RS485 Network                            |
| Protocol   | MODBUS RTU 💌                             |
| Address    | 1 -                                      |
| Baud Rate  | 9600 🔻                                   |
|            |                                          |
|            |                                          |
|            |                                          |

36.2. From MCS-CONNECT's Service Window RS485 tab (see below):

36.3. From Magnum LCD/Keypad(see below):



#### **36.4.** In MCS-CONFIG you can see & print a list of the Modbus Registers (see below):

|   |                                                                                                                                                                                                                                                                                                                                                   | System | Setup | ROs     | Sls     | AOs  | MAG HVAC      | Circuit Base | Circuit SI | Setpoints      | Auth | Schedule  | BMS Points  | Lookup Table    |        |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------|---------|------|---------------|--------------|------------|----------------|------|-----------|-------------|-----------------|--------|
|   | BMS Communication Protocols         CREATE MCS-BMS-GATEWAY CSV FILES                SI Points             C RO Points             C RO Run Hours             C RO Cycles             C AO Points             C Setpoint Values             C Unit Control Info             C Compressor Points             C Writable Points             C Alarms |        |       |         |         |      |               |              |            |                |      |           |             |                 |        |
| Ľ | SIPOINS                                                                                                                                                                                                                                                                                                                                           | O RUP  |       | KO Run  | Hours ( | RUCy |               | sor Input S  |            | III Control II |      | ompressor | Points () W | ntable Points ( | Alarms |
|   |                                                                                                                                                                                                                                                                                                                                                   |        | N,    | 5       |         | PO   | INT MAPPING I | NFO BUIL     | T IN MC    | S-MAGN         | IUM  |           |             |                 |        |
|   |                                                                                                                                                                                                                                                                                                                                                   | MCS    | -MAGI | NUM     |         |      |               | BACNET       | ID         |                |      |           | MODBUS      | IP & RTU        |        |
|   | PT                                                                                                                                                                                                                                                                                                                                                |        | N     | ame     |         |      | Object ID     |              | Name       | •              |      | Regis     | ster        | # Assumed I     | Dec 🔺  |
| ► | M-1                                                                                                                                                                                                                                                                                                                                               |        | Chil  | Wtr In  |         |      | AI:1          |              | ChilWtr    | In             |      | 300       | 01          | 1               |        |
|   | M-2                                                                                                                                                                                                                                                                                                                                               |        | Chil\ | WtrOut  |         |      | AI:2          |              | ChilWtr    | Dut            |      | 300       | 02          | 1               |        |
|   | M-3                                                                                                                                                                                                                                                                                                                                               |        | SUC   | T PSI 1 | I       |      | AI:3          |              | SUCT P     | SI 1           |      | 300       | 03          | 1               |        |
|   | M-4                                                                                                                                                                                                                                                                                                                                               |        | DISC  | CPSI1   |         |      | AI:4          |              | DISC PS    | SI 1           |      | 300       | 04          | 1               |        |
|   | M-5                                                                                                                                                                                                                                                                                                                                               |        | OIL   | PSI 1   |         |      | AI:5          |              | OIL PSI    | 1              |      | 300       | 05          | 1               |        |
|   | M-6                                                                                                                                                                                                                                                                                                                                               |        | AMP   | 'S 1    |         |      | AI:6          |              | AMPS 1     |                |      | 300       | 06          | 1               |        |
|   | M-7                                                                                                                                                                                                                                                                                                                                               |        | SUCT  | ТМР     | 1       |      | AI:7          |              |            | /IP 1          |      | 300       | 07          | 1               |        |
|   | M-8                                                                                                                                                                                                                                                                                                                                               |        | DISC  | TMP 1   | 1       |      | AI:8          |              | DISC TM    | IP 1           |      | 300       | 08          | 1               |        |
|   | M-9                                                                                                                                                                                                                                                                                                                                               |        | MTR   | TMP 1   |         |      | AI:9          |              | MTR TM     | P 1            |      | 300       | 09          | 1               |        |
|   | M10                                                                                                                                                                                                                                                                                                                                               |        | MTR   | FLT 1   |         |      | AI:10         |              | MTR FL     | Г 1            |      | 300       | 10          | 0               |        |
|   | M11                                                                                                                                                                                                                                                                                                                                               |        | OIL   | LVL 1   |         |      | AI:11         |              | OIL LVL    | . 1            |      | 300       | 11          | 0               |        |
|   | M12                                                                                                                                                                                                                                                                                                                                               |        | DISA  | BLE 1   |         |      | AI:12         |              | DISABLE    | E 1            |      | 300       | 12          | 0               |        |
|   | M13                                                                                                                                                                                                                                                                                                                                               |        | CHW   | FLOW    |         |      | AI:13         | (            | HW FLC     | w              |      | 300       | 13          | 0               |        |
|   | M14                                                                                                                                                                                                                                                                                                                                               |        | PHAS  | ELOSS   | 3       |      | AI:14         | F            | HASELO     | DSS            |      | 300       | 14          | 0               |        |
|   | M15                                                                                                                                                                                                                                                                                                                                               |        | RUN/  | STOP    |         |      | ΔI-15         |              |            | <b>NP</b>      |      | 300       | 15          | n               |        |

The Magnum Modbus RTU setting allow you to specify the Modbus Slave address, Modbus Baud rate (4800, 9600, 19200, 38400, 57600 are supported).

# The number data bit is 8, stop bit is 1 and parity is none (these parameter are not adjustable).

The sensors inputs are 16 bit signed values. (Read input Registers, Function code = 4)

• The analog sensor inputs values typically have 1 assumed decimal place, meaning a value of 12.3 will be transmitted as value 123. The # of decimal point depending on the sensor type define in the Magnum CONFIG. Most sensor types are 1 decimal place.

#### But take care there are a few 2 decimal and a few zero decimal place types.

The BMS point list has a column which indicates how many assumed decimal are contained in the value.

• The digital sensor inputs values will be 0 or 1, 0 = off and 1 = on.

The analog outputs are 16 bit signed values. (Read Input Registers, Function code = 4)

• The analog output have 1 assumed decimal place, meaning a value of 12.3 will be transmitted as value 123.

The relay outputs are 16 bit packed values. (Read Coil Status, Function code = 1)

• Each bit within the 16 bits can contains a relay output. A bit value of 0 = relay off, 1 = relay on.

The number of packed bit depends on the requesting Modbus message.

If only one coil is asked for, then only bit 0 will contains a relay status value and bit 1 thru 7 are do not care.

If two relays are asked for, then bit 0 and bit 1 will contains values and bit 2 thru 7 are do not care.

The setpoints are 16 bit signed values. (Read Holding Registers, Function code = 3)

• The setpoints values typically have 1 assumed decimal place, meaning a value of 12.3 will be transmitted as value 123.

The # of decimal point depending on the setpoint type defined in the Magnum CONFIG.

#### 36.5. Modbus Fault Sensors

If using a MCS-MODBUS I/O to connect a slave to the MCS-MAGNUM for reading register alarms, you need to setup the 'Sensor Input Information' **'CIRCUIT INDEX'** column to point to the circuit number the Modbus fault sensor belongs to.

The MCS-Magnum supports several special Modbus fault sensor types for reading multiple alarms from one Modbus register. The following are Modbus Fault sensor types:

- 1. DBCENT1
- 2. DBCENT2
- 3. DBCENT3
- 4. DanFltHi
- 5. DanFltLo
- 6. DanFlt2Hi
- 7. DanFlt2Lo
- 8. DWarHi
- 9. DWarLo
- 10. DWar2Hi
- 11. DWar2Lo
- 12. BitFltHi
- 13. BitFltLo
- 14. RKNG F1
- 15. RKNG F2
- 16. RKNG F3
- 17. RKNG F4
- 18. TurboCorFault

## Chapter - 37. RTU Unit and Compressor State Chart

| BM           | S Points Un | it State Chart   |
|--------------|-------------|------------------|
| State #      | State #     |                  |
| MCS & Modbus | BACnet      | State Text/Name  |
| 0            | 1           | UNIT IN POWER UP |
| 1            | 2           | POWER LOSS DELAY |
| 2            | 3           | NO RUN- I/O LOST |
| 3            | 4           | UNIT IN LOCKOUT  |
| 4            | 5           | UNIT IS OFF      |
| 5            | 6           | UNIT IS HOLDING  |
| 6            | 7           | UNIT UNLOADING   |
| 7            | 8           | UNIT IS LOADING  |
| 8            | 9           | OFF-SMOKE ALARM  |
| 9            | 10          | RUN/STOP SW OFF  |
| 10           | 11          | SCHEDULED OFF    |
| 11           | 12          | OFF-NO FLOW(s)   |
| 12           | 13          | OFF-WTR PSI FLOW |
| 13           | 14          | AMBIENT OFF      |
| 14           | 15          | PROCESS HEAT OFF |
| 15           | 16          | UNIT IS UNLOADED |
| 16           | 17          | UNIT IS LOADED   |
| 17           | 18          | RTU DEHUMID COOL |
| 18           | 19          | ECONOMIZER ONLY  |
| 19           | 20          | SWITCHING MODES  |
| 20           | 21          | UNIT SMOKE UNLDG |
| 21           | 22          | UNIT OFF UNLDING |
| 22           | 23          | UNIT DMD UNLDING |
| 23           | 24          | UNIT HEAT UNLDNG |
| 24           | 25          | UNLDING RUN CMPS |
| 25           | 26          | OPENING BYP VLV  |
| 26           | 27          | CMP RAMPING UP   |
| 27           | 28          | CLOSING BYP VLV  |
| 28           | 29          | FACTORY STARTUP  |
| 29           | 30          | MAXIMUM RUN TIME |
| 30           | 31          | NOT USED         |
| 31           | 32          | OFF-FIRE ALARM   |
| 32           | 33          | UNIT HEAT HOLDG  |
| 33           | 34          | CMP SPD OPTIMIZE |
| 34           | 35          | UNUSED STATE     |
| 35           | 36          | RS-STARTING COMP |
| 36           | 37          | RS-LOADING       |
| 37           | 38          | RS-HOLDING       |
| 38           | 39          | UNIT OFF CTRL SI |

| BM           | IS Points Un | it Mode Chart   |
|--------------|--------------|-----------------|
| State #      | State #      |                 |
| MCS & Modbus | BACnet       | State Text/Name |
| 0            | 1            | COOLING MODE    |
| 1            | 2            | ICE MAKING MODE |
| 2            | 3            | HEATING MODE    |
| 3            | 4            | DEHUMID MODE    |
| 4            | 5            | VENT ONLY       |
| 5            | 6            | DEHUMID MODE    |
| 6            | 7            | OFF             |
| 7            | 8            | SWITCHING MODES |
| 8            | 9            | COOLING WHEAT   |

| BMS Po       | ints RTU Bu | ilding Mode Chart |
|--------------|-------------|-------------------|
| State #      | State #     |                   |
| MCS & Modbus | BACnet      | State Text/Name   |
| 0            | 1           | OCCUPIED          |
| 1            | 2           | UNOCCUPIED        |
| 2            | 3           | OVER RIDE         |
| 3            | 4           | WARM UP           |

| BMS Points   | RTU Building | g Control States Chart |
|--------------|--------------|------------------------|
| State #      | State #      |                        |
| MCS & Modbus | BACnet       | State Text/Name        |
| 0            | 1            | HIGH                   |
| 1            | 2            | NORMAL                 |
| 2            | 3            | LOW                    |
| 3            | 4            | SMOKE                  |
| 4            | 5            | OFF                    |

| BM           | S Points RT | U State Chart   |
|--------------|-------------|-----------------|
| State #      | State #     |                 |
| MCS & Modbus | BACnet      | State Text/Name |
| 0            | 1           | PowerUpDelay    |
| 1            | 2           | MCS IO FAILED   |
| 2            | 3           | UNIT IN LOCKOUT |
| 3            | 4           | OFF SMOKE ALARM |
| 4            | 5           | OFF NO AIR FLOW |
| 5            | 6           | OFF RUN/STOP    |
| 6            | 7           | EVAP FAN ONLY   |
| 7            | 8           | COOLING STATE   |
| 8            | 9           | HEATING STATE   |
| 9            | 10          | DEHUMID STATE   |
| 10           | 11          | SWITCHING STATE |
| 11           | 12          | OFF FIRE ALARM  |
| 12           | 13          | SMOKE PURGE     |
| 13           | 14          | WARM UP         |
| 14           | 15          | SCHEDULED OFF   |

| BMS          | Points RTU H | leat State Chart |
|--------------|--------------|------------------|
| State #      | State #      |                  |
| MCS & Modbus | BACnet       | State Text/Name  |
| 0            | 1            | NOT USED         |
| 1            | 2            | OFF HIGH AMB     |
| 2            | 3            | DISABLED         |
| 3            | 4            | OFF              |
| 4            | 5            | LOADING          |
| 5            | 6            | UNLOADING        |
| 6            | 7            | HOLDING          |
| 7            | 8            | HOLD FOR IGN     |
| 8            | 9            | HOLD MG START    |
| 9            | 10           | LOADED           |
| 10           | 11           | UNLOADED         |
| 11           | 12           | OFF NO FLOW      |
| 12           | 13           | LOADG RECLAIM    |
| 13           | 14           | HOLD RECLAIM     |
| 14           | 15           | UNLODG RECLAIM   |
| 15           | 16           | LOADED RECLAIM   |

| BMS P        | oints RTU H | eat Stage States |
|--------------|-------------|------------------|
| State #      | State #     |                  |
| MCS & Modbus | BACnet      | State Text/Name  |
| 0            | 1           | NOT USED         |
| 1            | 2           | MOD OFF READY    |
| 2            | 3           | MOD ANTI-CYCLE   |
| 3            | 4           | MOD ON           |
| 4            | 5           | MOD HOLD IGN     |
| 5            | 6           | MOD HLD WARMUP   |
| 6            | 7           | STEP OFF READY   |
| 7            | 8           | STEP OFF TIME    |
| 8            | 9           | STEP ON          |
| 9            | 10          | STEP HOLD IGN    |
| 10           | 11          | SAFETY NO IGN    |
| 11           | 12          | LOCKOUT NO IGN   |
| 12           | 13          | OFF              |
| 13           | 14          | LOADING          |
| 14           | 15          | UNLOADING        |
| 15           | 16          | LOADED           |

| BMS Poin     | ts RTU Ener | gy Recovery Wheel |
|--------------|-------------|-------------------|
| State #      | State #     |                   |
| MCS & Modbus | BACnet      | State Text/Name   |
| 0            | 1           | OFF               |
| 1            | 2           | ON                |
| 2            | 3           | DEFROST           |
| 3            | 4           | NONE              |
| 4            | 5           | CLEAN             |

### **RTU Compressor State Chart**

| State #      | State # |                 | 25 | 26 | CMP IS AT 40%  |
|--------------|---------|-----------------|----|----|----------------|
| MCS & Modbus | BACnet  | State Text/Name | 26 | 27 | CMP IS AT 70%  |
| 0            | 1       | LOST IO LOCKED  | 27 | 28 | HI WATER HOLD  |
| 1            | 2       | CMP LOCKED OUT  | 28 | 29 | EXTRA 70% STE  |
| 2            | 3       | SWITCHED OFF    | 29 | 30 | OFF-LO OIL TMF |
| 3            | 4       | UNLD & PMPDWN   | 30 | 31 | HI AMP UNLDIN  |
| 4            | 5       | CMP ANTICYCLE   | 31 | 32 | DEF PREPMP O   |
| 5            | 6       | CMP OFF/READY   | 32 | 33 | DEFROSTING     |
| 6            | 7       | OIL PMP LUBING  | 33 | 34 | DEF PUMP DOW   |
| 7            | 8       | CMP IN STARTUP  | 34 | 35 | HI TEMP UNLOA  |
| 8            | 9       | CMP UNLOADED    | 35 | 36 | HI TEMP HOLD   |
| 9            | 10      | CMP UNLD STEP1  | 36 | 37 | SCROLL STEP 1  |
| 10           | 11      | CMP UNLD STEP2  | 37 | 38 | SCROLL STEP 2  |
| 11           | 12      | CMP IS HOLDING  | 38 | 39 | SCROLL STEP 3  |
| 12           | 13      | CMP IS LOADING  | 39 | 40 | SCROLL STEP 4  |
| 13           | 14      | CMP IS UNLDING  | 40 | 41 | ON OIL RECOVE  |
| 14           | 15      | CMP IS RUNNING  | 41 | 42 | WAIT P-RATIO   |
| 15           | 16      | FAST UNLOADING  | 42 | 43 | CMP GROUP OF   |
| 16           | 17      | LO SUCT UNLOAD  | 43 | 44 | CLOSING VANES  |
| 17           | 18      | LO SUCT HOLD    | 44 | 45 | TimingVaneOpn  |
| 18           | 19      | HI DISC UNLOAD  | 45 | 46 | TimingVaneCls  |
| 19           | 20      | HI DISC HOLD    | 46 | 47 | SURGE HOLD     |
| 20           | 21      | SAFETY TRIPPED  | 47 | 48 | OIL REC SPD UF |
| 21           | 22      | LO TEMP UNLOAD  | 48 | 49 | OIL REC OFF    |
| 22           | 23      | LO TEMP HOLD    | 49 | 50 | OIL REC BOOST  |
| 23           | 24      | HI AMP HOLD     | 50 | 51 | VFD TANDEM O   |
| 24           | 25      | HI DIS TMP HLD  |    |    | ·              |

### Chapter - 38. Setpoints Used By RTU Software

New setpoint types and additional fields have been activated to expand the individual setpoint capabilities. The fields that are displayed for the type of setpoint can also be changed via MCS Connect or from the Magnum keypad with the proper authorization.

#### **38.1. SETPOINT Types**

1. SETPOINT (standard setpoint value)

| Type of<br>Setpoint | Comments |   | Window to<br>Ext. Safety<br>Time(SEC) | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Night<br>Setback | MIN<br>VFD<br>Opening | MAX<br>VFD<br>Opening | <br>BMS Writeable<br>(Click Here to<br>Disable All) |
|---------------------|----------|---|---------------------------------------|-----------------------------------|--------------|-------------|------------------|-----------------------|-----------------------|-----------------------------------------------------|
| Setpoint            |          | — | —                                     |                                   | —            | —           | —                |                       |                       |                                                     |

allows the setpoint value to be viewed and changed.

2. ALARM or LOCKOUT (produce either an alarm of lockout condition)

| Type of<br>Setpoint | Comments | Ignore | Window to<br>Ext. Safety<br>Time(SEC) |   | High<br>Zone | Low<br>Zone | Night<br>Setback | MIN<br>VFD<br>Opening | MAX<br>VFD<br>Opening | MAX VFD<br>Adjustment | BMS Writeable<br>(Click Here to<br>Disable All) |
|---------------------|----------|--------|---------------------------------------|---|--------------|-------------|------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------|
| Lockout             |          | 60     | 0                                     | 0 | —            | —           | —                | —                     | —                     | —                     |                                                 |

Allows the value, safety time, Sec. to Ignore Safety, Window to Ext and Safety Ext fields to be viewed and changed.

3. TIME (time field can now be viewed)

| Type of<br>Setpoint | Comments | Ignore | Window to<br>Ext. Safety<br>Time(SEC) | High<br>Zone | Low<br>Zone | Night<br>Setback | MAX<br>VFD<br>Opening | Adjustment | BMS Writeable<br>(Click Here to<br>Disable All) |
|---------------------|----------|--------|---------------------------------------|--------------|-------------|------------------|-----------------------|------------|-------------------------------------------------|
| Time                |          |        |                                       | <br>         |             |                  | <br>                  |            |                                                 |

Allows the value and time to be viewed and changed.

4. TARGET (create a target with a control zone)

| Type of<br>Setpoint | Comments | SEC to<br>Ignore<br>Safety | Ext. Safety | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Night<br>Setback | MIN<br>VFD<br>Opening | MAX<br>VFD<br>Opening | MAX VFD<br>Adjustment | BMS Writeable<br>(Click Here to<br>Disable All) |
|---------------------|----------|----------------------------|-------------|-----------------------------------|--------------|-------------|------------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------|
| Target              |          | —                          | —           | —                                 | 0.01         | 0.01        | 0                | —                     | —                     |                       |                                                 |

Allows the value (target), time, Hi Zone (added to value for high zone), Low Zone (subtracted from the value for the low zone) and Night Setback (change to the value if night set back occurs). These fields will contain the same number of decimals as value fields.

5. ADJUST (maximum adjustment & minimum and maximum opening %)

| Type of<br>Setpoint | Comments |   | Ext. Safety | Safety Time<br>Extension<br>(SEC) | High<br>Zone | Low<br>Zone | Night<br>Setback |    | MAX<br>VFD<br>Opening | Adjustment | BMS Writeable<br>(Click Here to<br>Disable All) |
|---------------------|----------|---|-------------|-----------------------------------|--------------|-------------|------------------|----|-----------------------|------------|-------------------------------------------------|
| Adjust              |          | — |             |                                   |              |             | —                | 10 | 100                   | 5          |                                                 |

Allows the value (adjustment), time, MIN VFD Opening, MAX VFD Opening, and MAX VFD Adjustment. These fields will contain the same number of decimals as value fields

## Chapter - 39. RTU Setpoints

#### IMPORTANT: REVIEW SETPOINT USAGE, TYPE PLUS THE ADDITIONAL FIELDS!

| # | Name         | Туре               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|--------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | CTL TARGET   | TARGET             | Control target. This value is used as the base to develop the Control<br>Zone when the unit is in a cooling mode. Refer to setpoints #2 and #3.<br>The control target is used with the control zone and rate of change of<br>the controlling sensor to determine required action for the Magnum.<br>The controlling sensor is usually one of the following:<br>Leaving Temperature – Most common used as a target, fitting for most<br>applications.<br>Return Temperature – Used in sites with large air masses, ice rinks,<br>common areas, etc.<br>Suction Pressure – Used in continuously running process systems.<br>If unoccupied state is used, when the system is in unoccupied mode<br>the value in the Night Setback cell is added to the control target.<br>Low Zone – Offset to target that will prevent the unit from exiting<br>Economizer mode. Controlling air temp must fall below the target<br>minus the value in the low zone cell.                                                                    |
| 2 | CTL ZONE +   | SETPOINT           | Added to the CTL TARGET to create the upper limit of the control zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 | CTL ZONE -   | SETPOINT           | Subtracted from the CTL TARGET to create the lower limit of the con-<br>trol zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 | HGS TEMP ON  | SETPOINT<br>(TIME) | This setpoint is used with compressors with a hot gas bypass solenoid to provide temperature control for turning on the solenoid. When this setpoint is active and the control temperature is less than the CTL TARGET plus the value in this setpoint and there is at least one compressor running in this suction group or the FLA % is within the slide percentage offset (refer to Time cell of this set point) of setpoint #31 "MIN SLIDE%", the hot gas bypass solenoid for the compressor will be turned on.<br><b>'Time (sec)'</b> field: Contains the minimum slide percentage offset to enable the HGB. If non-zero, this value is added to setpoint #31 "MIN FLA%" to determine the range in which to enable the HGB. If zero, then the default value of 20 is added.<br><b>For example</b> , if this value is 10, then the HGB will enable when the compressors FLA% is within 10% of setpoint #31 "MIN FLA%". See setpoint #31 on how to setup as a target type to get the hardcoded 20% out of the way.      |
| 5 | HGS TEMP OFF | SETPOINT<br>(TIME) | This setpoint is used with compressors with a hot gas bypass solenoid to provide temperature control for turning off the solenoid. When this setpoint is active and the control temperature is greater than the CTL TARGET plus the value in this setpoint and there is at least one compressor running in this suction group or the FLA % is not within the slide percentage offset (refer to Time cell of this set point) of setpoint #31 "MIN SLIDE%", the hot gas bypass solenoid for the compressor will be turned off.<br><b>'Time (sec)'</b> field: Contains the minimum slide percentage offset to disable the HGB. If non-zero, this value is added to setpoint #31 "MIN FLA%" to determine the range in which to disable the HGB. If zero, then the default value of 30 is added. For example, if this value is 15, then the HGB will disable when the compressors FLA% is 15% or more above setpoint #31 "MIN FLA%". See setpoint #31 on how to setup as a target type to get the hardcoded 20% out of the way. |

| 6  | HGS PSI ON                         | SETPOINT           | This setpoint is used with compressors with a hot gas bypass solenoid to provide pressure control for turning on the solenoid. When this setpoint is active and the suction pressure is less than the value of this setpoint and the FLA % <b>is within offset</b> of setpoint #31 "MIN SLIDE%", the hot gas bypass solenoid for the compressor will be turned on. (refer to setpoint #4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | HGS PSI OFF                        | SETPOINT           | This setpoint is used with compressors with a hot gas bypass solenoid to provide pressure control for turning off the solenoid. When this setpoint is active and the suction pressure is greater than the value of this setpoint or the FLA % <b>is not within</b> 25% of the setpoint #31 "MIN SLIDE%", the hot gas bypass solenoid for the compressor will be turned off. (refer to setpoint #5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8  | L.INJECT.ON                        | TARGET             | This setpoint can be used for both liquid injection solenoids. (These must<br>be specified in the Liquid Injection column of the Circuit Base screen.)<br>If active and type is TARGET:<br>The adjustment multiplier is the value in the High Zone cell.<br>The adjustment divisor is the value in the Low Zone cell.<br>Else:<br>The adjustment multiplier is fixed at 3.<br>The adjustment divisor is fixed at 2.<br>Value: Liquid injection is turned on when the discharge temperature is<br>greater than or equal to this setpoint, and is turned off when the<br>discharge temperature is less than this setpoint minus 10.0°F (5.5°C).<br>If the controlling SUPER HEAT is 3x its target, LIQ INJ is turned ON and<br>remains ON until the controlling SUPER HEAT falls below 2x its target.<br>u(If you change the setpoint to a target type, the High Zone cell if not zero<br>will be the ON multiplier and the Low Zone sell if no zero will be the OFF<br>multiplier.)<br>'Time (sec)' field: If the first liquid injection solenoid has been on for a time<br>greater than this value, then turn on the second liquid injection solenoid. |
| 9  | SPRHT TARGET<br>or<br>LEVEL TARGET | SETPOINT<br>(TIME) | If EXV control is based upon superheat, this is the Superheat target<br>that the Magnum will control from.<br>If EXV control is based upon refrigerant level, this is the refrigerant<br>level target that the Magnum will control from.<br>'Time (sec)' field: Seconds between samples used for calculating the<br>Superheat Rate of Change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 | SPRHT ZONE +-                      | SETPOINT<br>(TIME) | The value in this setpoint is added and subtracted to setpoint #9 to determine the upper and lower limits of the control zone respectively. 'Time (sec)' field: If non-zero, skip ROC adjustment logic in the control zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 | EXV LOAD ADJ                       | SETPOINT           | The opening adjustment that will be made to the EXV percentage when<br>the circuit changes to the Loading state or the closing adjustment that<br>will be made when the circuit changes to the Unloading state.<br>Note: In MOP hold state, only closing adjustments are allowed.<br>Safety time cell, this value will act as a multiplier to the value of this<br>setpoint this will increase the "load" jump when we're ramping up<br>the compressor AO for a reheat flush. If not used, it will only jump the<br>valve the Value which could be too little when jumping the compressor<br>10% every 3 seconds. With the multiplier, a value of ".2" for normal<br>load adjusts, and a "5" in the Time field will jump the valve 1% every<br>time the AO is jumped, this will keep the valve consistent with the<br>amount we're jumping the compressor by. Obviously, it'll need to be<br>fine-tuned in the field. This is for STANDARD superheat control only,<br>FAST superheat needs no multiplier (it responds quick enough normally)                                                                                                           |
| 12 | EXV FINE ADJ                       | SETPOINT           | The adjustment is made when in the 1 <sup>st</sup> zone above or below the control zone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 13 | EXV COURSE    | SETPOINT           | This adjustment is made when in the 2 <sup>nd</sup> zone above or below the control                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|---------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | EXV COURSE    | SETFOINT           | zone and the adjustments are made in 1/2 the time. When above or below the control below the 2 <sup>nd</sup> control zone the adjustments are made in 1/4 the time.                                                                                                                                                                                                                                                                                                                                                           |
| 14 | EXV LOAD DIV  | SETPOINT           | As the Amp draw % changes this divides the EXV % change. It is calculated as follows:<br>[(Max slide% – min slide%) / (Max vlv% - min vlv%)] +1                                                                                                                                                                                                                                                                                                                                                                               |
| 15 | EXV MIN %     | SETPOINT           | This is the minimum valve position allowed when modulating the expansion valve. This value should be set so when hot gas is applied the valve opening is adequate.                                                                                                                                                                                                                                                                                                                                                            |
| 16 | EXV MAX %     | SETPOINT           | This is the maximum position allowed when modulating the expansion valve to maintain the superheat target. This value should be the valve % opening at full capacity plus a 10 to 15 % margin.                                                                                                                                                                                                                                                                                                                                |
| 17 | LO SUPERHEAT  | SETPOINT           | If the calculated superheat remains below this value for the time specified, the Magnum will generate a LOW SUPERHEAT alarm.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18 | LOWSUCPSI DLY | SETPOINT           | Delay in seconds when in 'Low Suction PSI Opening' between adjustments to the EXV valve.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19 | EXV DELAY     | SETPOINT           | Delay in seconds between valve adjustments. Should not be less than 48. (When adjusting at 4x this will allow 12 seconds for the controller to process the results of the last action before making the next adjustment)                                                                                                                                                                                                                                                                                                      |
| 20 | EXV STRT TIME | SETPOINT<br>(TIME) | This is the time in seconds to hold the valve at the start % setpoint<br>when the compressor starts. Since the superheat calculation is not<br>valid when the compressor is not running the EXV logic sets the valve<br>to a given position for a set time to allow the system to develop a valid<br>superheat.<br>'Time (sec)' field: If zero, then there is no delay when a compressor is<br>ready to start. If non-zero, this is the time delay in which the EXV valve<br>is allowed to open before the compressor starts. |
| 21 | MAX TRG RESET | SETPOINT           | This value is used to adjust setpoint #1 "CTL TARGET". The Sensor<br>Input value will vary between 0 and 5 volts and the adjustment to the<br>control target will be modulated from negative "MAX TRG RESET" to<br>the positive "MAX TRG RESET" value.                                                                                                                                                                                                                                                                        |
| 22 | LOW AMBIENT   | SETPOINT           | If the ambient temperature is below this value the system will be disabled<br>the compressor(s) will be AMBIENT OFF. The unit will remain off until<br>the ambient temperature rises above this setpoint value by 5.0F (2.5C).                                                                                                                                                                                                                                                                                                |
| 23 | POWERUP DELAY | SETPOINT           | If this set point is active the value will be the time in seconds that the system will remain in the START UP state before moving to the next state. If inactive the startup delay will be 60 seconds.<br>'Time': When set to CPM control the time field now becomes the delay before defaulting to stand alone control on loss of communication from the CPM. This value can't be set below 30 seconds (hardcoded)                                                                                                           |
| 24 | HI AMBIENT    | SETPOINT           | If active and the ambient temperature is above this value the system will be disabled the compressor(s) will be AMBIENT OFF. The unit will remain off until the ambient temperature drops below this setpoint value by 5.0F (2.5C).                                                                                                                                                                                                                                                                                           |
| 25 | STEP SENSTIY  | SETPOINT           | This value is used to adjust the rate of response to changes in the control algorithm. 1 is the fastest response, whereas higher numbers will mean a more gradual response.                                                                                                                                                                                                                                                                                                                                                   |
| 26 | STEP DELAY    | SETPOINT<br>(TIME) | Value: This is the time delay before making adjustments to the system capacity. Used only with the Magnum Control Zone control method.<br>'Time (sec)' field: If used, this will force a minimum time delay between any two compressor starts. This time delay is specified in the 'Minimum Delay Between Compressor Starts' box in the 'Cooling Info' panel under the MAG RTU screen.                                                                                                                                        |
| 27 | MAX ROC -     | SETPOINT           | Maximum negative Rate of Change allowed before preventing the unit from loading. If the ROC is less than this value the capacity control state is set to HOLDING.                                                                                                                                                                                                                                                                                                                                                             |

| 28 | MAX ROC +                    | SETPOINT           | Maximum positive Rate of Change allowed before preventing the unit from unloading. If the ROC is greater than this value the capacity control state is set to HOLDING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29 | ROC INTERV                   | SETPOINT           | Seconds between samples used for calculating the Rate of Change.<br>Used only with the Magnum Control Zone control method. (Maximum<br>60 seconds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30 | MAX FLA %<br>or<br>MAX VFD % | ALARM              | Indicates the maximum amp draw or speed allowed. Usually set to 100%, else compressors will load to the value of this setpoint until all steps are on, and then the system will load to 100%.<br>'Time (sec)' field: If non-zero, then force individual compressors to stay at maximum capacity when another compressor starts. This option is selected in in the 'Keep Running Comp at 100% when starting next?' box in the 'Cooling Info' panel under the MAG RTU screen.<br>'SEC to Ignore Safety' field (Fully Loaded Screw Compressor logic): If non-zero, turn on the load solenoid every 5 min for 5 seconds when fully loaded. If zero, then do not turn on solenoid for 5 seconds when holding. If zero, then do not turn on solenoid for 5 seconds when holding. If zero, then do not turn on solenoid for 5 seconds every 5 minutes.                                                                                                                           |
| 31 | MIN FLA %<br>or<br>MIN VFD % | SETPOINT<br>(TIME) | Value: Indicates the minimum amp draw, slide %, digital scroll load%,<br>or speed allowed (usually 40%). This is where the slide valve or VFD<br>will be set when the compressor is turned on. This % is a function of<br>actual amp draw relative to the FLA.<br>'Time (sec)' field: If used, this forces a time delay before unloading all<br>running compressors before the next compressor is started. This time<br>delay is specified in the 'Unload Compressor Before Starting Next' box<br>in the 'Compressor Information' panel under the MAGNUM screen. Will<br>Delay next compressor for this time after EVAP pump/valve is opened.<br>Target: If this set point is setup as a target type the value in the night<br>setback column will be added to the set point VALUE to allow safety<br>unloading all the way down to this value. This replaces a hardcoded<br>20%. This is also utilized in conjunction with hotgas setpoints #4 and<br>#5 on temperature. |
| 32 | MAX ADJUST %                 | SETPOINT<br>(TIME) | Indicates the maximum percentage change that can be made to the slide valve or VFD.<br>'Time (sec)' field: A zero indicates that the calculated FLA will be used; else the value in setpoint #31 will be used when starting the next compressor. This value is specified in the 'Wanted FLA starting next Compressor' box in the 'Cooling Info' panel under the MAG RTU screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33 | MIN ADJUST %                 | SETPOINT           | Indicates the minimum percentage change that can be made to the slide valve or the VFD.<br>For Fixed Step Compressors with adjustable speed AO's when returning to 100% after shutting down another compressor, this setpoint will be the percent of adjustment along with setpoint #56 "PULSE DELAY" which is the time frame between capacity adjustments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34 | SLIDE SENSITY                | SETPOINT           | This controls the sensitivity of the adjustment made to the Wanted<br>Percentage (adjustments are relative to the difference between the<br>current control sensor and target). The larger the value the larger the<br>adjustment (usually 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 35 | Humidity Target     | TARGET             | Required if Humidity option is specified as other than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                     |                    | 'Not Used'.<br>Value: Humidity target.<br>Safety time: Not used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                     |                    | High zone: added to value to create the top of zone.<br>Lo zone: subtracted from value to create the bottom of zone.<br>Night setback: if the control value is greater than the value plus the<br>night setback, the humidity control will be off.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36 | Humidity Adjustment | DELAY              | Required if Humidity option is specified as other than<br>'Not Used'.<br>Value: Maximum adjustment to humidifier valve.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37 | LOAD PULSE          | SETPOINT<br>(TIME) | Length of time to engage the slide valve load solenoid in tenths of a second (usually between 1 and 9).<br>'Time (sec)' field: If non-zero, use this value as a multiplier to increase the load pulse when the compressor's amp draw is more than three times the value of setpoint #36 "AMP DB LO".<br>'SEC to Ignore Safety' field: If zero, then use delay between pulses.<br>If non-zero, then no delay between pulses when the compressor's amp draw is more than twice the value of setpoint #36 "AMP DB LO" away from the wanted FLA.                                                                                                                           |
| 38 | UNLOAD PULSE        | SETPOINT           | Length of time to engage the slide valve unloads solenoid in tenths of a second (usually between 1 and 9).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39 | LUBE OIL TMP        | SETPOINT<br>(TIME) | The oil must reach this temperature before the system will move out<br>of the LUBE state. If the oil temperature is below this value before the<br>compressor begins its startup sequence, the circuit will be placed in the<br>OFF-LO OIL TMP state.<br>'Time (sec)' field: If in LUBE state, the compressor type is centrifugal,<br>and this field is equal to 0 then the calculated oil temperature shut<br>down is the saturated suction temperature plus the value of this setpoint,<br>else it is simply the value of this setpoint. This option is selected in in<br>the 'Lube State Oil Setpoint' box in the "Cooling Info' panel under the<br>MAG RTU screen. |
| 40 | LUBE OIL PSI        | SETPOINT           | The oil must reach this pressure differential between low and high oil pressure before the circuit will move out of the LUBE state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 41 | LUBE DELAY          | SETPOINT           | This is the maximum time that a compressor can be in the LUBE state.<br>When this time is exceeded, an alarm is generated and the compressor<br>is locked out. Both the oil temperature and pressure must be satisfied<br>before the LUBE state will be exited. Refer to the OIL PMP LUBING<br>state.                                                                                                                                                                                                                                                                                                                                                                  |
| 42 | HI WATER TMP        | SETPOINT           | If active, the control sensor's value will be compared to the value of this setpoint. If it exceeds this temperature for the time specified in the "Time (sec)' field' a HI WATER TMP alarm will be generated. No lockouts will occur. This alarm will repeat if the control value drops .5° below this setpoint and then rises above it again.                                                                                                                                                                                                                                                                                                                        |
| 43 | CENT P-DWN FLA      | SETPOINT           | Only used with variable compressors. If active, this will be the thresh-<br>old for ending the pump down state, number of amps. If the Setpoint is<br>inactive then the FLA Setpoint for that compressor will be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 44 | PRE-HEAT MUL/DIV                      | TARGET   | Value: Multiply adjustment for the AO opening.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|---------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                       |          | Safety time is NOT USED.<br>High Zone cell is the multiply adjustment for the time delay between<br>making adjustments.<br>Low Zone cell is the divisor adjustment for the time delay between<br>making adjustments.<br>Night Setback cell is the divisor adjustment for the AO opening.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 45 | CND STG1 ON<br>(RO Type)              | SETPOINT | When the discharge pressure is above this value, turn on the first stage of<br>the condenser fans.<br>'Time (sec)' field: (Applies to compressors with shared condensers) If<br>non-zero, then the compressor in startup state will not be in sole control of<br>the condenser fans, it will control off of highest discharge pressure. If zero,<br>then compressor in startup will have sole condenser control for 5 minutes.<br>This option is selected in the 'Newly started Comp Controls Common<br>Fan Bank' box in the 'Condenser Information' panel under the MAGNUM<br>screen.<br>When in dehumidification mode, night setback cell of Setpoint #45 is<br>used to add a offset value to the discharge pressure target for the<br>condenser logic and this Setpoint needs to be a TARGET type. |
|    | PID MOD Individual<br>PID Step Common | SETPOINT | If active, multiplier uses PID condenser control KP (Proportional). Set-<br>up as setpoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46 | CND STG1 OFF<br>(RO Type)             | SETPOINT | If stage 1 of condenser capacity is on and the discharge pressure drops below this value, then turn this stage off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | PID MOD Individual<br>PID Step Common | SETPOINT | If active, uses Multiplier for Ki adjustments (Integral Time Delay). Setup as setpoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 47 | CND DIFF ON<br>(RO Type)              | SETPOINT | Differential pressure added to setpoint #45 to set the threshold at which each additional stage of condenser capacity will turn on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | PID MOD Individual<br>PID Step Common | Target   | If active, uses Multiplier for Kd adjustments, (ROC Time Delay). Setup as Target.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 48 | CND DIFF OFF<br>(RO Type)             | SETPOINT | Differential pressure added to setpoint #46 to set the threshold at which each additional stage of condenser capacity will turn off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | CND ADJ DELAY<br>(Modulate)           | SETPOINT | If active this is the time in seconds between condenser adjustments to<br>the AO. If inactive, then 30 seconds will be used as the delay.<br>If type is DELAY: (required for condenser relay delays).<br>-MIN VFD Opening cell contains the time delay between<br>turning on a relay and moving the AO to its minimum position (setpoint<br>#52).<br>-MAX VFD Opening cell contains the time delay between turning<br>off a relay and moving the AO to 100%.                                                                                                                                                                                                                                                                                                                                          |
|    | DUAL PSI DELTA<br>(Dual V8)           | SETPOINT | Minimum difference in pressure before the second stage of condenser capacity can be started.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 49 | CND MIN RUN<br>(RO Type)              | SETPOINT | Once a condenser stage has been turned on, it will remain on for at least the amount of minutes specified in this setpoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | DUAL TIME DELAY<br>(Dual V8)          | SETPOINT | Time delay once the pressure difference in setpoint #48 has been reached before the second condenser stage can be started.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | CND START %<br>(Modulating Type)      | SETPOINT | If active, then the value is the starting % for the AO when the RO that is tied to it turns on. The value in the "Time (SEC)" cell is the AO starting stage. If no Relays are used when CMP starts set value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50 | CND TRGT<br>(Modulating Type)         | SETPOINT | Target logic will try to maintain modulating the AO.<br><b>SP must be set up as target type</b> and use the Hi/Low zones for the target control zone.<br><b>If target type in Heat Pump mode, setback is added to target.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|    | LO AMB SUMP OFF<br>(RO Type)      | SETPOINT                       | If active and ambient temperature is less than the value of this setpoint,<br>then the sump pump relay will be locked off if it is the starting condenser<br>Relay Output. When the ambient temperature rises above the value<br>of this setpoint plus two times the value in setpoint #192 "FRZ TEMP<br>DIFF" if active (hardcoded 15°F if inactive), then the sump pump relay<br>will be allowed on again.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51 | CND ADJ DIV<br>(Modulating Type)  | SETPOINT                       | Controls scaling of the amount the AO is adjusted (usually 1). The larger the number the smaller the AO adjustment as the adjustment will be divided by this value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | CND VFD MIN                       | SETPOINT                       | If there is a VFD associated with the condenser, this is the starting minimum speed.<br>'Time (sec)' field: This field contains the condenser stage that must be on before the VFD is modulated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52 | CND MIN %<br>(Modulating Type)    | SETPOINT                       | Minimum AO % allowed.<br>If compressor is off, then check the "Time (SEC)" field:<br>If 0, then the AO % will be set to the value of this setpoint. If 2 and the<br>run/stop is set to run, then set the AO % to 100%, else set the AO %<br>to 0%. This option is selected in the "Default Valve Opening % when<br>Comp. is OFF" box in the condenser information section in the MAG<br>HVAC screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53 | CND ROC-<br>(Modulating Type)     | SETPOINT                       | Maximum negative rate of change allowed. If the rate of change is less<br>than this setpoint, then stop modulating the AO. The absolute value<br>of this setpoint also serves as the maximum positive rate of change<br>allowed. If the rate of change is greater than the absolute value of this<br>setpoint, then stop modulating the AO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54 | CND MIN SPD<br>(RO Type)          | SETPOINT                       | Minimum speed percentage for variable speed condenser control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | CND ADJ MULT<br>(Modulating Type) | SETPOINT                       | Controls the scaling of the amount the AO is adjusted. The larger the number the larger the AO adjustment as the adjustment will be multiplied by this value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55 | CND MAX SPD<br>(RO Type)          | SETPOINT                       | Maximum speed percentage for variable speed condenser control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | CND MIN ADJ<br>(Modulating Type)  | SETPOINT                       | The value in this setpoint is the minimum % the AO will be modulated when a change is made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56 | PULSE DELAY                       | SETPOINT<br>(TIME)<br>(TARGET) | Used with variable capacity screws. The number of seconds between<br>load or unload pulses (Usually between 3 and 5. Allows load change to be<br>checked before next pulse and eliminates oil foaming when unloading too<br>fast).<br>'Time (sec)' field: If used, this is the fast unloading state time delay. This<br>option is selected in in the 'Fast Unload Delay' box in the 'Compressor<br>Information' panel under the MAG V8 screen.<br>For Fixed Step Compressors with adjustable speed AO's when returning<br>to 100% after shutting down another compressor, this setpoint will be the<br>time frame between capacity adjustments along with setpoint #33 "MIN<br>ADJUST %" which is the percent of adjustment.<br>Target: When using reheat flush with a VFD compressor this must be<br>a <b>target type setpoint</b> and it will control the ramping of the compressors<br>AO when entering a reheat flush cycle.<br>The high zone will be the divider of the value.<br>Example: If you have a 20% for the night setback in setpoint #213, a 10<br>for the value of setpoint #56 and a 2 in the high zone of setpoint #56. Then<br>the logic will increase the compressor AO by 20% every 5 seconds. |
| 57 | NOT USED                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 58 | NOT USED                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | а.<br>                            |                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|    | 0                 |          |                                                                                                                                                                                                                                                                                                                                                                                              |
|----|-------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59 | ACYC OFF->ON      | SETPOINT | This is the anti-cycle time delay (in seconds) from when the compressor<br>was turned off. This value is used in a calculation to determine how<br>long a compressor should be in the anti-cycle state. Refer to the<br>Standard Control Options section, Compressor Anti-Cycle Logic (OFF<br>to ON).                                                                                        |
| 60 | MITSI P-DWN CUTIN | SETPOINT | If the compressor is a Mitsubishi, is being unloaded, and the suction<br>pressure is greater than this setpoint, then the compressor will be<br>forced to pump down. NOTE: this value is used whether the setpoint is<br>active or inactive.                                                                                                                                                 |
| 61 | PMP DWN OFF       | SETPOINT | This is the suction pressure value for turning off the compressor when<br>in the PUMP DOWN or for opening the liquid line solenoid during the<br>PRE-PUMP down state.                                                                                                                                                                                                                        |
| 62 | PMP DWN DELY      | SETPOINT | Maximum time delay (in seconds) that a compressor can remain in<br>the PUMP DOWN or PRE-PUMP down states. The Time in sec field<br>specifies the time the unit will remain in unloading before shutting off<br>the LLS & EXV and pumping down.                                                                                                                                               |
| 63 | ACYC ON->ON       | SETPOINT | This is the anti-cycle time delay (in seconds) from when the compressor<br>was turned on. This value is used in a calculation to determine how<br>long a compressor should be in the anti-cycle state. Refer to the<br>Standard Control Options section, Compressor Anti-Cycle Logic (ON to<br>ON).                                                                                          |
| 64 | COMP MIN RUN      | SETPOINT | This is the minimum run time (in minutes) for a compressor once it is<br>turned on. This minimum run time can be overridden by a safety condition,<br>however.                                                                                                                                                                                                                               |
| 65 | EXV ZONE1         | SETPOINT | Temperature differential used to build the EXV Zone 1 both plus and minus.                                                                                                                                                                                                                                                                                                                   |
| 66 | EXV ZONE2         | SETPOINT | Temperature differential that is used to build the EXV Zone 2 both plus and minus. Temperatures above this zone are considered in zone 3.                                                                                                                                                                                                                                                    |
| 67 | EXV ROC ZONE 1    | SETPOINT | The EXV control logic will compare the value of this setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within the EXV control zone.<br>'Safety Down Time (MIN)' field: The minimum time delay between EXV adjustments when in the EXV control zone.                                                                                       |
| 68 | EXV ROC ZONE1     | SETPOINT | The EXV control logic will compare the value of this setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 1.<br>'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 1. If this setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds. |
| 69 | EXV ROC ZONE2     | SETPOINT | The EXV control logic will compare the value of this setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 2.<br>'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 2. If this setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds. |
| 70 | EXV ROC ZONE3     | SETPOINT | The EXV control logic will compare the value of this setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within zone 3. 'Safety Down Time (MIN)' field: This is the minimum time delay between EXV adjustments when in the EXV control zone 3. If this setpoint is inactive then the ROC for this zone is 0 and the delay is 15 seconds.    |

| 71 | EXV TOO FAST | SETPOINT | When the superheat is with the control zone, the EXV control logic will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |              |          | compare the value of this setpoint to the temperature rate of change<br>to determine the valve adjustment when the temperature is within the<br>zone and rising too fast.<br>'Safety Down Time (MIN)' field: This is the minimum time delay be-<br>tween EXV adjustments if the rate of change is too fast when in EXV<br>control zones 1 or 2. If this setpoint is inactive then the ROC for this<br>zone is 0 and the delay is 15 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 72 | EXV CHANGING | SETPOINT | When the superheat is with the control zone, the EXV control logic will compare the value of this setpoint to the temperature rate of change to determine the valve adjustment when the temperature is within the zone and rising.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73 | STARTER DLAY | SETPOINT | This Setpoint controls the start of a compressor's second relay.<br>If the 'Select Value: # decimals & print char' cell is set to 'HUMD or %'<br>then logic is:<br>If First Compressor Relay has been on longer than 2 seconds and the<br>FLA% goes below the value of this setpoint or is still above the value<br>but reaches the time value in the safety time field than turn on the<br>second relay. (If the low zone field is zero use the hardcoded 2 sec-<br>onds belay at start. If greater than zero use that valve).<br>Setpoint Information Screen, if the ' <b>Select Value: # decimals &amp; print<br/>char'</b> cell is set to 'Seconds' then the Setpoints value is a time delay<br>between the first and second relay's start. Used for part wind (typical val-<br>ue of 1) and star delta (typical value of 5) starter.                                                                                                                                                                                                                                                                                                                                                                                                  |
| 74 | OIL PUMP OFF | SETPOINT | If oil pump is always on (specified in MCS-Config), this setpoint is not<br>used. Otherwise this setpoint contains the oil pressure value when the<br>oil pump is to be turned off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 75 | HI AMPS      | SETPOINT | This setpoint is a percentage of the FLA; it is used to create the high<br>amp draw limit. The value of this setpoint is multiplied by the respective<br>compressor's full load amps setpoint (#171 through #190) to obtain<br>its upper limit. If the compressor's amps exceed this value for the time<br>specified in this setpoint, then a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 76 | LO AMPS      | SETPOINT | This setpoint is a percentage of the FLA; it is used to create the low<br>amp draw limit. The value of this setpoint is multiplied by the respective<br>compressor's full load amps setpoint (#171 through #190) to obtain its<br>lower limit. If the compressor's amps fall below this value for the time<br>specified in this setpoint, then a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 77 | LOW SUCTION  | SETPOINT | If active, the Magnum checks for low suction pressure for each running<br>compressor. If suction pressure is less than this value for the specified<br>period of time, a safety trip occurs.<br>Refers to 'Suction Pressure' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 78 | LO SUCT UNLD | SETPOINT | The purpose of this setpoint is to take corrective action to prevent a low suction pressure safety trip. For fixed step compressors: If a compressor has more than one step, is fully loaded, and if the suction pressure is less than the value of setpoint #77 "LOW SUCTION" plus the value of this setpoint, then one step of capacity will be turned off. For variable step compressors: If a compressor has a suction pressure less than the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of this setpoint, then the compressor will be forced to unload. The circuit state will be changed to LO SUCT HOLD, and will remain in this state for a minimum of the time in setpoint #101 "SAFETY HOLD DELAY". At that time, if the suction pressure has increased greater than the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #79 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #79 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #79 "LOW |
|    |              |          | SUCT RELD" the compressor will return to normal control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 80 | UNSAFE SUCT    | SETPOINT | If active, the Magnum checks for unsafely low suction pressure for<br>each running compressor. If suction pressure is less than this value<br>for the specified period of time a lockout occurs (can configured as a<br>regular safety with automatic reset if 'Setpoint Type' is Setpoint instead<br>of Lockout). NOTE: The time period specified should be very short (2-5<br>seconds). If this setpoint trips, the compressor will be sent straight to<br>the Lockout state.<br>Refers to 'Suction Pressure' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 81 | HI DISC PSI    | SETPOINT | If active, the Magnum checks for high discharge pressure for each running compressor. If the discharge pressure sensor reads greater than this setpoint for the specified period of time, a safety trip will occur. Refers to 'Discharge Pressure' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 82 | HI DISC UNLD   | SETPOINT | The purpose of this setpoint is to take corrective action to prevent<br>a high discharge pressure safety trip. For fixed step compressors:<br>If a compressor has more than one step, is fully loaded, and if the<br>discharge pressure is more than the value of setpoint #81 "HI DISC<br>PSI" minus the value of this setpoint, then one step of capacity will<br>be turned off. For variable step compressors: If a compressor has a<br>discharge pressure more than the value of setpoint #81 "HI DISC PSI"<br>minus the value of this setpoint, then one step of capacity will<br>be turned off. For variable step compressors: If a compressor has a<br>discharge pressure more than the value of setpoint #81 "HI DISC PSI"<br>minus the value of this setpoint, then the compressor will be forced<br>to unload. The circuit state will be changed to HI DISC HOLD, and<br>will remain in this state for a minimum of the time in setpoint #101<br>"SAFETY HOLD DELAY". At that time, if the discharge pressure has<br>decreased below than the value of setpoint #81 "HI DISC PSI" minus<br>the value of setpoint #83 "HI DISC RELD" the compressor will return to<br>normal control. |
| 83 | HI DISC RELD   | SETPOINT | Refer to setpoint #82 descripition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84 | LO DISC SHEAT  | SETPOINT | If the calculated discharge superheat is less than this value for the specified period of time, a safety trip will occur. Also, there is an option in the Circuit Base screen to tie a Relay Output to this setpoint that will activate whenever a low discharge superheat condition occurs. A Low Discharge Superheat condition can also put the circuit into a 'HI DISC UNLOAD' state where the compressor will unload to try to raise the superheat. If economizer is being used, when the discharge superheat goes below the value for the safety time / 9 the economizer is turned off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 85 | LO DISC PSI    | SETPOINT | If active, the Magnum checks for low discharge pressure. If the dis-<br>charge sensor reading is less than this value for the specified period of<br>time, a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 86 | HI RETURN TEMP | SETPOINT | Only active in Mitsubishi compressors. If active the Magnum will check<br>for high entering liquid temperature. If this temperature is greater than<br>the value in this setpoint, the circuit state will be HI WATER HOLD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87 | HI DISC TMP    | SETPOINT | If active, the Magnum checks for high discharge temperature for each compressor. If the discharge temperature sensor reading is greater than this setpoint for the specified period of time, a safety trip will occur. Refers to 'Discharge Temperature' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 88 | DIS TMP UNLD | SETPOINT | The purpose of this setpoint is to take corrective action to prevent a high discharge temperature safety trip. For fixed step compressors: If a compressor has more than one step, is fully loaded, and if the discharge temperature is more than the value of setpoint #87 "HI DISC TMP" minus the value of this setpoint, then one step of capacity will be turned off. For variable step compressors: If a compressor has a discharge temperature more than the value of setpoint #87 "HI DISC TMP" minus the value of this setpoint, then one step of capacity will be turned off. For variable step compressors: If a compressor has a discharge temperature more than the value of setpoint #87 "HI DISC TMP" minus the value of this setpoint, then the compressor will be forced to unload. The circuit state will be changed to HI DISC HOLD, and will remain in this state for a minimum of the time in setpoint #101 "SAFETY HOLD DELAY". At that time, if the discharge temperature has decreased below than the value of setpoint #87 "HI DISC TMP" minus the value of setpoint #89 "HDISC T RELD" the compressor will return to normal control. |
|----|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89 | DIS TMP RELD | SETPOINT | Refer to setpoint #88 description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 90 | CND FAULT    | SETPOINT | For condensers with Fault Indicators:<br>If setpoint is active, a condenser fault occurs, and the setpoint type is<br>Alarm, then an alarm message will be generated. If the type is Lock-<br>out, and a condenser fault occurs, then all of the compressors associated<br>with this fault will be locked off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91 | LOW OIL DIF  | SETPOINT | If active, the Magnum checks for low differential oil pressure. If the calculated differential oil pressure is less than this value for the specified period of time, a safety trip occurs.<br>Refers to 'Oil Pressure' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 92 | UNSAFE OIL   | SETPOINT | If active, the Magnum checks for unsafe differential oil pressure. If the calculated differential oil pressure is less than this value for the specified period of time, a lockout occurs. NOTE: The time period specified should be very short (2-5 seconds). If this setpoint trips, the compressor will be sent straight to the Lockout state.<br>Refers to 'Oil Pressure' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 93 | HI OIL SEAL  | SETPOINT | Only used with screw or centrifugal compressors. If the oil seal or oil cooler temperature exceeds the value of this setpoint for the time specified, a safety trip occurs.<br>Refers to 'Oil Seal Temp' column in Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 94 | HI OIL TEMP  | SETPOINT | If active, the Magnum checks for high oil temperature. The sensor can<br>be either an analog or digital input. If the oil temperature sensor reading<br>is ON (Digital) or exceeding the temperature value of this setpoint<br>(Analog) for the specified period of time, a safety trip occurs.<br>Refers to 'Oil Temp' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 95 | MOTOR FAULT  | SETPOINT | If active, the Magnum checks for high motor temperature. The sensor<br>can be either an analog or digital input. If the motor temperature sensor<br>reading is ON (Digital) or exceeding the temperature value of this<br>setpoint (Analog) for the specified period of time, a safety trip occurs.<br>Refers to 'Motor Temp' column in the Circuit SI screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96 | NO CMP PROOF | SETPOINT | If active, when the compressor is called to be on by the controller, the<br>Magnum will check for a digital input to indicate that the compressor is<br>indeed running. If the controller calls for a compressor to turn on and<br>no proof is given in the specified period of time, a safety trip occurs.<br>Refers to 'Comp Proof' column in the Circuit Base screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 97 | DIRTY FILTER | SETPOINT | Only used for screw compressors. If discharge pressure minus oil filter pressure is greater than this value for the time specified, a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 98  | LLS#2 ON                 | SETPOINT         | This setpoint is used to control a second liquid line solenoid. When the actual circuit capacity is greater than this value (can either be number of steps for Fixed Step compressors, or percentage of full load amps for Variable Step compressors) for the number of seconds in the 'Time (sec)' field, the second liquid line solenoid will open. When the actual circuit capacity falls below this value minus the 'Lockout Delay Hrs.' Field, then the second liquid line will be turned off. 'Time (sec)' field: The delay in seconds before the solenoid will be turned on. If zero, then there will be no delay. 'Lockout Delay Hrs.' Field: Offset that will be subtracted from the value of this setpoint. When the actual circuit capacity falls below this offset, the solenoid will be turned off. If zero, then an offset of 20% will be used.                                                                                                                                                                        |
|-----|--------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 99  | LLS#3 ON<br>(ECONOMIZER) | SETPOINT         | This setpoint is used to control a third liquid line solenoid. When the actual circuit capacity is greater than this value (can either be number of steps for Fixed Step compressors, or percentage of full load amps for Variable Step compressors) for the number of seconds in the 'Time (sec)' field, the third liquid line solenoid will open. When the actual circuit capacity falls below this value minus the 'Lockout Delay Hrs.' Field, then the third liquid line will be turned off. 'Time (sec)' field: The delay in seconds before the solenoid will be turned on. If zero, then there will be no delay. 'Lockout Delay Hrs.' Field: Offset that will be subtracted from the value of this setpoint. When the actual circuit capacity falls below this offset, the solenoid will be turned off. If zero, then an offset of 20% will be used. If the LO DISC SHEAT setpoint #84 is active and the discharge superheat goes below the value in this setpoint for the safety time / 9, the economizer will be turned off. |
| 100 | HIGH SUMP TEMP           | SETPOINT         | If active, and sump temperature is above the value of this setpoint for<br>the time specified, a HIGH SUMP TEMP alarm is generated and the<br>unit is locked out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 101 | SAFETY HOLD DE-<br>LAY   | SETPOINT         | Time in seconds that the circuit will remain in a hold state after the<br>condition that caused it has returned to normal. The circuit can be hold-<br>ing for the following reasons:<br>Low suction pressure<br>Low refrigerant temperature<br>High discharge pressure<br>High discharge temperature<br>High amperage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 102 | Return Fan Fault         | LOCKOUT<br>ALARM | If active and there is a return fan fault and it is on for the time specified<br>in the safety time field the return fan fault message will be generated. If<br>the type is LOCKOUT the unit will be locked out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 103 | LEAD COMP                | SETPOINT         | Enables the user to specify the lead compressor. The value of this setpoint will indicate the lead compressor. If zero, then auto rotation is enabled.<br>'Time (sec)' field: If non-zero, the compressor with the least amount of run time will be made the lead upon rotation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 104 | COMP ROTATION            | SETPOINT         | Specifies the number of days between rotations (setpoint #103 must be set to zero to enable auto rotation). If zero, then rotation will occur with every cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 105 | AIR FLOW FAILURE         | SETPOINT         | If active and air flow is lost for the time specified in the safety time cell<br>an alarm message will be generated and the unit will be locked off. Unit<br>state will be 'OFF NO AIR FLOW' and the cooling state will be 'UNIT IN<br>LOCKOUT'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 106 | Dehumidification<br>suction target<br>Time(sec)<br>Delay between<br>modulating CMP VFD          | TARGET   | Used to add compressors when in dehumidification mode. One compressor<br>per suction group is required to be turned on. If the suction pressure is<br>greater than the value of this setpoint plus the high zone value and the<br>compressor is fully loaded (VFD is at 100&) an additional compressor,<br>if available, in this suction group will be turned on. A High SI OFF must<br>be set up to turn off this additional compressor.                                                                                                 |
|-----|-------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 107 | NOT USED                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 108 | Supply Fan delay                                                                                | DELAY    | If the Supply fan is cycled, the value contains the pre delay once the fan is wanted on before the fan can be turned on and the safety time contains the post delay. The MIN VFD Adjustment is the initial delay before the fan can be started after lockout.                                                                                                                                                                                                                                                                             |
| 109 | High refrigeration<br>Level                                                                     | SETPOINT | This setpoint has two functions.<br>If active, the Magnum checks for high refrigeration level. If the refrigeration<br>level sensor is greater than this value for the specified period of time, a<br>safety trip occurs.<br>If active, system has EXV valve control based on refrigerant level, and<br>the refrigerant level is greater than this value, then the EXV valve<br>adjustment will be set to the value in setpoint #13 "EXV COURSE" * (-3).<br>Refers to 'Refrig Level' column in the Circuit SI screen                      |
| 110 | Refrigeration Level<br>EXV Adjustment<br>(EXV Control: Refrig-<br>erant Level)                  | SETPOINT | If setpoint #84 "LO DISC SHEAT" is active and it has reached one third<br>of its safety time, then setpoint #9 "REF LVL TRG" will be set to the<br>value of this setpoint. The purpose is to decrease the EXV valve opening<br>to avoid a low discharge superheat safety trip. This change will be<br>updated in the setpoint status value.                                                                                                                                                                                               |
|     | Discharge Super heat<br>EXV Adjustment<br>(EXV Control: Dis-<br>charge or Suction<br>Superheat) | SETPOINT | If setpoint #84 "LO DiscSPRHT" is active and it has reached one third<br>of its safety time, then setpoint #9 "SUPERHT TRGT" will be increased<br>by the value of this setpoint. The purpose is to decrease the EXV valve<br>opening to avoid a low discharge superheat safety trip.                                                                                                                                                                                                                                                      |
| 111 | FREEZE                                                                                          | SETPOINT | If active, the Magnum will compare the leaving temperature to this setpoint. If it is less than this value for the specified period of time, a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                        |
| 112 | NO STOP                                                                                         | SETPOINT | This setpoint is used to ensure that a compressor is actually off when<br>the controller calls for it to be off. This setpoint contains a percent-<br>age of the FLA for setpoints #65-#72. If the compressor amperage is<br>greater than this percentage of the FLA setpoint for the specified period<br>of time, signaling that the compressor is still running, then the entire<br>system is locked out and a NO STOP alarm is generated. If a Control<br>Power relay is specified, then it will be turned off when this safety trips. |
| 113 | OIL INJ TEMP DIFF                                                                               | SETPOINT | This is a temperature differential subtracted from setpoint #8 to control the oil injection relay. When discharge temperature is above this differential, then oil injection is turned on. If inactive then value will be $5.6^{\circ}$ F ( $2.8^{\circ}$ C).                                                                                                                                                                                                                                                                             |
| 114 | OIL TEMP DIFF                                                                                   | SETPOINT | This is a temperature differential used in controlling the oil heater and second liquid line solenoid. If inactive then value will be set to 5° F.                                                                                                                                                                                                                                                                                                                                                                                        |
| 115 | Economizer VFD fan<br>Delay                                                                     | SETPOINT | If active, and the fluid cooler has a VFD condenser fan, this Setpoint will be the time in seconds between adjustments to the VFD. If inactive, then the value of Setpoint #124 "EcoVIvAdjDly "will be used for this delay timer.                                                                                                                                                                                                                                                                                                         |
| 116 | Relief damper<br>pressure target<br>(Control Exhaust Fan<br>Damper)                             | TARGET   | Only used if relief damper control is selected. The high & low zone values are used to create the control zone.                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 117 | Relief damper<br>adjustment                             | DELAY    | Only used if relief damper control is selected.<br>Value: Not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|---------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                         |          | Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 118 | Override timer for<br>changing unoccupied<br>to occupy. | SETPOINT | The amount of time that the override state will be maintained once the override indicator is off. The time is adjusted based upon selection in the Select Value: column. If HOURS are selected and the value is 1, the time will be adjusted to 1 hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 119 | EcoOffsetON                                             | TARGET   | If active the temperature differential to allow the outside air damper logic to run as an economizer will be the value of this set point. If inactive then the differential will be 2.0 degrees.<br>The outside control temperature differential must be greater than the return control temperature to enable the economizer to be active.<br>1. If STP119 is setup as a target type and the setback value is not equal to zero then Differential is set equal to the value of STP119. setback, else Differential value is set equal to a hardcoded 1.0<br>2. Economizer ON -> if R/A temp is greater than O/A + STP119 value<br>3. Economizer OFF -> if R/A temp is less than (O/A temp + STP119. value – differential)<br>Example: If return is 80 and ambient is 78 we will enable the economizer based on the value of setpoint 119 being 2. |
| 120 | Eco Stg Dely                                            | SETPOINT | Once the economizer valve has been opened to its maximum and<br>all fans associated only with it have been turned on, the economizer<br>function will wait this time in seconds before the first condenser fan is<br>turned on or VFD is set to its minimum position. The minimum setting<br>of the VFD is the value of Setpoint #54 "CND MIN SPD".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 121 | Economizer MIN<br>VLV%                                  | TARGET   | Minimum Outside air damper (Economizer) Analog Output valve<br>percentage. This will be the value used when first starting the econ-<br>omizer function as well as the lowest level before turning off. This<br>setpoint must be active to indicate that the Economizer AO option is<br>active. This percent of opening must be maintained to version require-<br>ments; only exception is in a smoke or fire situation then the opening<br>goes to 0%<br>If the system is in HEATING mode with Direct Fire Heating the Night<br>Setback value will be added to the value of this setpoint to force the<br>damper to be open. For example if the value is 10.0 and the Night Set<br>back is 43.5 then the minimum damper opening when in Heating mode<br>with direct fire heater will be 53.5%.                                                   |
| 122 | Economizer MAX<br>VLV%                                  | SETPOINT | Maximum Economizer Analog Output valve percentage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 123 | Economizer MAX ADJ                                      | SETPOINT | Maximum adjustment to the Economizer Analog Output valve percent-<br>age with each calculation. Formula:[absolute value of(Target – current)<br>* Multiplier setpoint #126] / Divisor setpoint #126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 124 | Economizer VFD<br>Adjustment Delay                      | SETPOINT | Delay between Economizer Analog Output valve adjustments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 125 | NOT USED                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 126 | Economizer MULT/<br>DIV                                 | DELAY    | Setpoint is used to scale adjustments to the Economizer Analog Output valve percentage. The difference between the control sensor and its target will be multiplied by this value and then divided by the value in the MAX VFD Adjustment cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|     |                                                                                                 |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|-------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 127 | Damper Air Flow                                                                                 | TARGET   | If the unit has an Outdoor Air Flow sensor, then the O/A damper's mini-<br>mum opening will be adjusted to maintain the air flow with in the control<br>zone of this setpoint. The high & low zone values are used to create<br>the control zone. The time is the delay between adjustments.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 128 | Lost Leg Alarm                                                                                  | SETPOINT | If active, a check for a lost leg (lost current flow) on a part winding starter is added. A current sensor will be placed on only one of the legs; it must be set up to be multiplied by 2 in MCS-Config (select CT-### x2 as the sensor in the SI screen). If current flow to the leg with the sensor is lost, a low amp alarm will be generated. If the sensor is reading more than the wanted FLA times the value of this setpoint for the specified period of time, then a high amp alarm is generated.                                                                                                                                                                                                                        |
| 129 | Reheat Target<br>(If unit was R/A ,<br>byps modulate first to<br>maintain temp then<br>reheat.) | TARGET   | Dehumidification reheat target and control zone. Used in the control of<br>the circuit reheat when the system is in dehumidify mode. The high &<br>low zone values are used to create the control zone.<br>When Reheat is on the night setback, value will be used to allow a<br>flush if less than the value.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 130 | Reheat Adjustment                                                                               | DELAY    | Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 131 | CO2 opening                                                                                     | DELAY    | If active and the CO2 level goes above the value of this setpoint than<br>set the Outside Air Damper to the value in the (Min VFD Opening)<br>Field.<br>Note: If Setpoint #207 "CO2 High Min Damper opening" is active the<br>value of this setpoint will be the minimum opening. (This is used when<br>BMS wants to write/change the minimum opening.)<br>Optional: modulating Outside Air Damper on High CO2 levels. The set-<br>point value will be the target along with the High Zone and Low Zone.<br>The (Time (SEC)) Field is the delay between adjustments.<br>Setpoint #207 "CO2 Modulating Multiplier/Divisor" value will be the<br>multiplier and the MAX VFD ADJ will the divisor for the scaling of ad-<br>justment. |
| 132 | OAD PROOF                                                                                       | DELAY    | Keep Supply fan OFF until oad_ao_position_feedback is ON or fully<br>open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 133 | No heat high ambient                                                                            | TARGET   | If active:<br>Disable heating if outside air temperature is above the value. Once<br>disabled, outside air temperature must be less than the value minus<br>the low zone.<br>If inactive:<br>The above test will not be made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 134 | Humidity Damper<br>Target                                                                       | TARGET   | Required if Humidity option is specified as other than<br>'Not Used' and a damper has been specified.<br>Value: Humidity Damper target.<br>Safety time: Not used<br>High zone: added to value to create the top of zone.<br>Lo zone: subtracted from value to create the bottom of zone.<br>Night setback: Not used.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 135 | Humidity Damper<br>Adjustment                                                                   | DELAY    | Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 136 | Supply fan adjustment multiplier & divisor                                                      | DELAY    | Value is the multiplier and the MAX VFD ADJ is the divisor used to fine tune the adjustments to the supply fan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|     | 1                                                                      | · · · · · · · · · · · · · · · · · · · | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 137 | Exhaust fan adjust-<br>ment multiplier &<br>divisor                    | DELAY                                 | Set point is used to adjust the control value of the building static minus<br>building target. The value is the multiplier and the MAX ADJ value is<br>the divisor which is used to fine tune the adjustments to the Exhaust<br>Fan.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 138 | Exhaust Damper mul-<br>tiplier & divisor                               | DELAY                                 | Set point is used to adjust the control value of the building static minus<br>building target. The value is the multiplier and the MAX ADJ value is<br>the divisor which is used to fine tune the adjustments to the Exhaust<br>Damper.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 139 | OIL LEVEL                                                              | SETPOINT                              | If active and there is an oil float digital input. It must be ON for the period of time specified in the setpoint before this setpoint will trip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 140 | Heat Reclaim Adjust-<br>ment                                           | DELAY                                 | Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 141 | Heat Reclaim<br>multiplier & divisor                                   | DELAY                                 | Set point is used to adjust the control value heat target minus heating<br>sensor The value is the multiplier and the MAX ADJ value is the divisor<br>which is used to fine tune the adjustments to the Heat Reclaim.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 142 | SERVICE MODE                                                           | SETPOINT                              | If active and the value is non-zero, then a compressor being disabled<br>by the pump down switch will be continue to run until its suction pressure<br>is zero. The compressor will be turned on to perform the pump down<br>the number of times indicated in this setpoint. This is in preparation for<br>service to be performed on the compressor.                                                                                                                                                                                                                                                                                                                                      |
| 143 | UNLOADED %                                                             | SETPOINT                              | Used if a slide percentage sensor is present. When this sensor is reading less than the value of this Setpoint, then the slide is considered unloaded. Also used for a centrifugal vane closed. If the vane% sensor is reading less than the value of this Setpoint, then the vane is considered closed.<br>Optional: If Setpoint is set up as a target, the value of this Setpoint equals the % at which the slide is considered closed. If the Time(SEC) field is set > 0 then slide control will be used instead of AMPS. High & low zone are used to develop the control zone based upon the capacity wanted %. Make Setpoint #35 "AMP DB HI" and Setpoint #36 "AMP DB LO" non-active. |
| 144 | OIL HEATER ON                                                          | SETPOINT<br>(TIME)                    | The oil heater will be turned on if the oil temperature is less than the value of this setpoint. It will be turned off if the oil temperature is greater than the value of this setpoint plus 5.0° Fahrenheit.<br>'Time (sec)' field: If zero, then the calculated oil temp will be the saturated suction temperature plus the value of the setpoint. Else it will be the value of this setpoint.                                                                                                                                                                                                                                                                                          |
| 145 | OIL COOLER ON                                                          | SETPOINT                              | The oil cooler will be turned on if the oil seal temperature is greater<br>than the value of this setpoint. It will be turned off if the oil seal<br>temperature is less than the value of this setpoint minus 5.0° Fahrenheit.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 146 | Low Static PSI                                                         | Lockout                               | If the duct static pressure is less than the value of this setpoint for the time in the safety time a low pressure alarm will be generated and the system will be locked out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 147 | NOT USED                                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 148 | Fault for the modulat-<br>ing GAS or modulat-<br>ing SCR heater types. | SETPOINT                              | Used for alarm message when associated fault occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 149 | High Static PSI                                                        | Lockout                               | If the supply duct static pressure is greater than the value of this setpoint for the time in the safety time a high pressure alarm will be generated and the system will be locked out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 450 |                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 150 | Supply fan fault                           | Lockout<br>Alarm   | If the supply fan fault is on an alarm message indicating this will be generated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                            |                    | If this set point is a LOCKOUT type then the unit will be locked out when this fault occurs; else the system will continue to function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 151 | UNLOADED OFF                               | SETPOINT<br>(TIME) | If active, the system is fully unloaded, and the control temperature is<br>greater than this value, then the capacity state will be set to holding.<br>'Time (sec)' field: If non-zero, then the value of this setpoint is used as<br>a differential and not a set temperature. The value of this setpoint is<br>subtracted from setpoint #1.                                                                                                                                                                                                                                                                                                                                     |
| 152 | HP OVERHEAT                                | SETPOINT           | This setpoint is only used when the heat pump option has been selected<br>in the 'Heat Pump' option in the 'Heat Info' panel under the MAG RTU<br>screen. It is used to protect against a heat pump with unloaders (or<br>variable speed) from overheating. When this setpoint is active and the<br>leaving temperature sensor is greater than this setpoint minus 3.0°<br>Fahrenheit, then the compressor will enter HIGH TEMP UNLOAD<br>state. The temperature must drop to less than this setpoint minus 4.5°<br>Fahrenheit before the system will move to the holding state.                                                                                                  |
| 153 | Safety Unload delay                        | SETPOINT           | The time delay in seconds between compressor capacity adjustments when safety unloading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 154 | VFD Adjustment when<br>in safety unloading | SETPOINT           | The VFD percentage adjustment to be made after every amount of time in setpoint #153 "SftyUnld Del" when safety unloading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 155 | LO REF TMP                                 | SETPOINT           | If active, the Magnum checks for low refrigerant temperature. If the refrigerant temperature is less than the value of this setpoint for the specified period of time, a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 156 | LO REF UNLD                                | SETPOINT           | The purpose of this setpoint is to take preventative action before a low refrigerant temperature safety trip. The compressor will unload when the refrigerant temperature is less than the value of the setpoint #155 "LO REF TMP" plus this setpoint. The compressor state will be changed to LO TMP UNLOAD. The compressor will remain in this state until the refrigerant temperature is above the value of setpoint #155 "LO REF TMP" plus twice the value of this setpoint. The compressor state state until the refrigerant temperature is above the value of setpoint #155 "LO REF TMP" plus twice the value of this setpoint. The compressor state change to LO TMP HOLD. |
| 157 | Heat pump Low Suc-<br>tion Adjustment      | SETPOINT           | This setpoint is only used when the heat pump option has been<br>selected in the 'Heat Pump' option in the 'Heat Info' panel under the<br>MAG RTU screen. If active and in heating mode, the low suction value<br>setpoint #77 "LOW SUCTION" is reduced by the value of this setpoint.                                                                                                                                                                                                                                                                                                                                                                                            |
| 158 | DEF TRIG TMP                               | SETPOINT           | If a defrost option has been specified and either coil #1 or coil #2 temperature is less than or equal to this setpoint a defrost cycle will be started if sufficient time has elapsed since the last defrost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 159 | DEF TRIG CYC                               | SETPOINT           | Target - If the setpoint type != "TARGET" type, then normal post<br>defrost pump down occurs, else if = "TARGET" type then special post<br>def pump down is perform. The comp is turned off for time setup in the<br>setpoint #62 "Pmp Dwn Dlay" value field and Cmp VFD spd is set to<br>30% for 10 second, then 50% for 15 seconds, then cmp is set back to<br>normal operation.                                                                                                                                                                                                                                                                                                |
| 160 | DEF REV DEL                                | SETPOINT           | If a reversing valve is used, this is the delay in minutes the system<br>must wait once the valve has been opened before the defrost cycle can<br>continue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 161 | DEF TERM TMP                               | SETPOINT           | If both coil #1 and coil #2 temperature are greater than the value of this setpoint, then the defrost cycle can be terminated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 162 | DEF TERM DEL                               | SETPOINT           | The length of time in minutes of the defrost cycle.<br>Target - If the setpoint type = 'Target' type, the comp goes to anticycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 163 | Heating Target                             | TARGET             | Target when in heating mode. High and Low values used to create the control zone. If unit is in unoccupied mode the Night Setback value will be subtracted from the value of this setpoint for control purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 164             | Heating Stage 1<br>Delay                                                           | TIME     | Delay between heating adjustments for stage 1 of heating                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 165             | Heating Stage 2<br>Delay                                                           | TIME     | Delay between heating adjustments for stage 2 of heating                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 166             | PHASE LOSS                                                                         | SETPOINT | If active and the phase loss digital input is ON for the specified period<br>of time, a safety trip occurs. The system will attempt to restart after<br>waiting the number of minutes contained in the 'Safety Down Time'<br>field of this setpoint.                                                                                                                                                                                                                                                      |
| 167             | PURGE FLT ERROR<br>(Only used with Screw<br>Compressor)                            | SETPOINT | If active and purge float error occurs, a purge float alarm is generated.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 168             | PURGE COUNT<br>(Only used with Screw<br>Compressor)                                | SETPOINT | If the total number of purges that occurred during the last three purge cycles exceed this value, then reset all counters and generate a Maximum Purges Exceeded alarm.                                                                                                                                                                                                                                                                                                                                   |
| 169             | PURGE PSI ST<br>(Only used with Screw<br>Compressor)                               | SETPOINT | When the purge pressure sensor reading is equal or greater than this value, then a purge cycle will be initiated. The cycle will end when the purge pressure sensor reading is less than the value of this setpoint minus setpoint #193 "PSI DIFF", or 5 psi if inactive.<br>If the time in a purge cycle exceeds this setpoint's value in seconds, then the cycle will be terminated and an Excessive Purge Time alarm will be generated.                                                                |
| 170             | PRE-HEAT TARGET                                                                    | TARGET   | Value: Target of the pre-heat function.<br>Safety Time is NOT USED.<br>High Zone cell is added the value to produce the high zone.<br>Low Zone cell is subtracted from the value to produce the low zone.<br>Night Setback cell is NOT USED.                                                                                                                                                                                                                                                              |
| 171<br>-<br>178 | FLA AMP for circuits<br>1 through 8. (RTU<br>supports a maximum<br>of 8 circuits.) | TARGET   | Value: AMP drawn of circuit.<br>Safety time: Not used<br>High zone: This is added to the value to create the upper dead band<br>limit of the FLA. If the amps are within the dead band, the slide valve<br>will not be moved.<br>Lo zone: This is subtract to the value to create the lower dead band<br>limit of the FLA. If the amps are within the dead band, the slide valve<br>will not be moved.<br>Night setback: Not used.<br>(The high & low zone values are NOT percentages but actual values.) |
| 179             | PRE-HEAT ADJUST-<br>MENT                                                           | DELAY    | Value: Minimum adjustment that can be made.<br>Safety time is the delay between adjustments.<br>MIN VFD Opening: This is the minimum AO setting.<br>MAX VFD Opening: This is the maximum AO setting.<br>MAX VFD Adjustment: This is the maximum adjustment that can be<br>made.                                                                                                                                                                                                                           |
| 180             | Energy Wheel Offset<br>Temp                                                        | SETPOINT | If active the value will be used as the offset to determine if the energy wheel can function. If inactive, then a fixed value of 2.0 will be used as the differential.                                                                                                                                                                                                                                                                                                                                    |
| 181             | Return Relief Damper                                                               | TARGET   | This set point is required if a return relief damper has been specified.<br>Target for return static psi. High and Low values used to create the<br>control zone.<br>Value: Return Relief Damper target.<br>Safety time: Delay between adjustments<br>High zone: added to value to create the top of zone.<br>Lo zone: subtracted from value to create the bottom of zone.<br>Night setback: Not used.                                                                                                    |

| 182 | Return Relief Damper<br>Adjustment<br>Return Relief Damper                                                                                                             | DELAY                           | This set point is required if a return relief damper has been specified.<br>It is used to adjust the relief damper's VFD.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.<br>Value is the multiplier and the night set back value is the divisor used                                                                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | multiplier & divisor                                                                                                                                                   |                                 | to fine tune the adjustments to the return relief damper's VFD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 184 | Mod Gas Adjustment<br>(This setpoint is also<br>used with Direct Fire<br>type of heating and<br>Modulating SCR.)                                                       | DELAY                           | Adjustments for mod gas valve and minimum and maximum valve<br>openings.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                                                                                                 |
| 185 | Mod Gas multiplier &<br>divisor & time that the<br>gas stage must be off<br>(This setpoint is also<br>used with Direct Fire<br>type of heating and<br>Modulating SCR.) | DELAY                           | <ul> <li>The value is the multiplier.</li> <li>The time cell is the minimum time that the gas stage must be in the TIME OFF state. This is similar to an anti-cycle timer.</li> <li>Min Opening is not used.</li> <li>Max Opening is not used</li> <li>Max Adj is the divisor used to fine tune the adjustments.</li> </ul>                                                                                                                                                                                                                                                                           |
| 186 | Mod Gas ignition<br>(This setpoint is also<br>used with Direct Fire<br>type of heating)                                                                                | LOCKOUT                         | Only used if the Ignition Indicator sensor is not used.<br>-The Value is the increase in heat that is needed to prove that ignition<br>has been successful. If the control temperature decreases while waiting<br>for ignition, the heat increase will be based on this value.<br>-The time field contains the time to wait for ignition, if time expires then<br>mark this stage off line and generate an error message (only one error<br>message will be generated between lockout reset).<br>-The time to ignore safety cell contains the time that the step will remain<br>in the warm up state. |
| 187 | Mod Gas Fan switch<br>to high speed (not<br>used with Direct Fire<br>type of heating)                                                                                  | SETPOINT                        | Determines when the system will switch from low fan speed to high fan<br>speed.<br>When the mod gas opening is greater than value of this setpoint plus the<br>value in setpoint #184 the high speed fan will be turned on.<br>With MOD GAS heating types when warm up has been satisfied, use<br>high zone of set point #187 as the valve opening if is greater than 0<br>else use the minimum valve opening in set point #184.                                                                                                                                                                      |
| 188 | ENGY Wheel ALARM                                                                                                                                                       | ALARM                           | Used for alarm message when the ERW fault is on for a time greater than the value in the safety time cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 189 | Humidification Fault                                                                                                                                                   | ALARM                           | Used for alarm message when the humidifications fault is on for a time greater than the value in the safety time cell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 190 | Warm Up                                                                                                                                                                | TARGET<br>(setup in<br>minutes) | This setpoint must be active to execute warm up and provide set point<br>information when in the warm up mode.<br>Value: Maximum time for warm up must be greater than zero.<br>Safety time: Not Used<br>High Zone: R/A Target if cooling is required.<br>Low Zone: R/A Target if heating is required.<br>Night Setback: The heat S/A Target (Setpoint #163 "Heating Target")<br>gets reset to this valve.                                                                                                                                                                                            |

| 191 | TEMP DIFF                         | SETPOINT           | This temperature differential is used to replace the hardcoded temperature                                                                                                                                                                                                                                                                                                                        |
|-----|-----------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                   |                    | differential values of several values. It is used with the following:<br>Discharge temperature<br>Low oil seal temperature<br>Low/high ambient cutoffs<br>Compressor discharge superheat<br>If inactive, then hardcoded value of 5° F is used Display Units specified<br>as Deg F/PSI (English) else 2.8C (Metric).                                                                               |
| 192 | FRZ O/A Damper<br>Close           | TARGET             | If active the outside air damper opening will be checked.<br>Value: if the leaving temperature is less than the value of this set point<br>outside air damper minimum opening will be reduced by the night<br>setback value.<br>Safety Time: Time between adjustments.<br>Night Setback: Reduce the opening by this amount.                                                                       |
| 193 | PSI DIFF                          | SETPOINT           | This temperature differential is used to replace the hardcoded temperature<br>differential values of several values. It is used with the following:<br>Discharge temperature<br>Low oil seal temperature<br>Low/high ambient cutoffs<br>Compressor discharge superheat<br>If inactive, then hardcoded value of 5° F is used Display Units specified<br>as Deg F/PSI (English) else 2.8C (Metric). |
| 194 | CND 2 <sup>ND</sup> ZONE          | SETPOINT           | The value in this setpoint is the 2nd high and low zone for your target of setpoint #50 "CND TRGT". If inactive then a default zone of 20 psi will be used, if metric 1.4 Bar.                                                                                                                                                                                                                    |
| 195 | CFM Adjustment<br>TARGET          | TARGET             | Set point is used when the supply fan is being controlled on CFM.<br>Value: value is subtracted from the S/A CFM sensor value to give you<br>the return CFM Target. Target is dynamic.<br>High Zone: Added to the target to create the top of the control zone.<br>Low Zone: Subtracted from the target to create the bottom of the<br>control zone.                                              |
| 196 | Return Fan Multiplier/<br>Divisor | TARGET             | Value is the multiplier and the night set back value is the divisor used<br>to fine tune the adjustments to the return relief fan's VFD.<br>Safety Time: Delay before the return fan can be turned off.                                                                                                                                                                                           |
| 197 | Building PSI Target               | TARGET             | Set point used to develop the control zone for the building pressure.<br>Value: Target for building pressure and control zone.<br>High Zone added to target to create the top of the control zone<br>Low Zone: Subtracted from the target to create the bottom of the<br>control zone.                                                                                                            |
| 198 | Building PSI Adjust-<br>ment      | DELAY              | Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                         |
| 199 | MOP TARG PSI                      | SETPOINT           | If active, maximum operating pressure (MOP) control will be added<br>to the EXV control logic. This value will be the MOP suction pressure<br>target.                                                                                                                                                                                                                                             |
| 200 | MOP PSI ZONE                      | SETPOINT           | Added to and subtracted from setpoint #199 to develop the upper and lower limits of the MOP control zone.                                                                                                                                                                                                                                                                                         |
| 201 | MOP ADJ % TME                     | SETPOINT<br>(TIME) | The adjustment value by which the EXV valve will close each time<br>the MOP logic calls for it to maintain the suction pressure target. This<br>adjustment will be made each time after the delay in the 'Time (sec)'<br>field has expired.<br>'Time (sec)' field: The delay between MOP adjustments.                                                                                             |

| 0.00 |                                        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 202  | DELTA TEMP EVP                         | SETPOINT            | If active, the Magnum will check the temperature differential before<br>additional capacity is enabled. If the difference between entering and<br>leaving temperature is greater than the value of this setpoint for the<br>amount of time in the 'Time (sec)' field, then no additional capacity will<br>be allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203  | High Suction Super-<br>heat            | SETPOINT            | If active, the Magnum will check for high suction superheat. If the suc-<br>tion superheat is greater than the value of this setpoint for the specified<br>period of time, an alarm will be generated and a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 204  | COND LOW AMB                           | SETPOINT            | Standard condenser logic dictates that a newly started compressor will<br>use its own discharge pressure as the control for the first five minutes.<br>If this setpoint is active and the ambient temperature sensor is reading<br>less than the value of this setpoint, then this compressor's discharge<br>pressure will remain in control for the additional time in seconds as<br>specified in the 'Time (sec)' field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 205  | MDP MIN OIL DIFF                       | SETPOINT<br>(ALARM) | If active, MDP logic will be added to EXV control. If the oil differential pressure is less than the value of this setpoint following compressor start up during the time specified in the Sec to Ignore Safety field, then the MDP function is active and will close the EXV valve to restore the oil differential pressure. However, the EXV will not be allowed to go into the MDP logic if the suction pressure is less than setpoint #77 "LOW SUCTION" plus the value of setpoint #79 "LOW SUCT RELD". The MDP logic will be exited and go to EXV HOLDING when the suction pressure is less than the setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #77 "LOW SUCTION" plus the value of setpoint #78 "LOW SUCT UNLD". The "Time (sec)" field contains the offset value added to setpoint #205 value field to calculate the oil differential pressure for exiting the MDP control. Magnum software version 8.05S1 and later multiple this value by 10 to add a decimal, so if you enter a value of 5 in this field the offset is 5.0psi. Prior to 8.05S1 software version you need to enter the value with 1 assumed decimal place, for example if you wanted an offset of 5.0psi you need to enter 50 in this field. The 'Lockout Delay" field contains the percentage to close the EXV valve when in the "MDP CLOSE" state. Magnum software version 8.05S1 and later multiple this value by 10 to add a decimal, so if you enter a value of 2 in this field the adjustment is 2.0%. Prior to 8.05S1 software version you need to enter the value with 1 assumed decimal place, for example if you wanted an adjustment of 2.0% you need to enter 20 in this field. The 'Sec to Ignore Safety' cell contains the time ( <b>in minutes – not seconds</b> ) that the MDP will be active after a compressor is started. |
| 206  | COND HI AMB                            | SETPOINT            | If active, standard condenser control on compressor startup logic will<br>be bypassed when there is a high ambient temperature. If the con-<br>denser type is common and the ambient temperature is above the<br>value of this setpoint, then the compressor with the highest discharge<br>pressure will have control of the condenser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 207  | CO2 High Min Damp-<br>er opening       | SETPOINT            | Set point usage if not 100% Outside Air unit.<br>If the CO2 level is high, greater than value of setpoint #131 "CO2<br>Opening" the minimum opening of the outside air damper will be the<br>value of this setpoint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | CO2 Modulating Mul-<br>tiplier/Divisor | DELAY               | Set point usage if modulating the Outside Air Damper on High CO2<br>Levels.<br>The value will be the multiplier and the MAX VFD ADJ will be the divisor<br>for the scaling of adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 208 | LOW SI OFF                                    | SETPOINT<br>(TIME) | If active, the Magnum checks for a Low SI Off sensor for each compressor.<br>The sensor can be either an analog or digital input, and is specified in<br>the Circuit SI screen. If the Low SI Off sensor reading is OFF (Digital)<br>or falls below the value of this setpoint (Analog) for the specified period<br>of time, the circuit will be disabled. If a digital input, the circuit will be<br>enabled once the sensor is ON. If an analog input, the circuit will be<br>enabled once the sensor is greater than this value plus the value in the<br>'Time (sec)' field.<br>'Time (sec)' field: Differential value of this setpoint which the analog<br>input must be greater than to enable the compressor. |
|-----|-----------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 209 | HI SI OFF                                     | SETPOINT           | If active, the Magnum checks for a High SI Off sensor for each compressor.<br>The sensor can be either an analog or digital input, and is specified in<br>the Circuit SI screen. If the High SI Off sensor reading is ON (Digital) or<br>rises above the value of this setpoint (Analog) for the specified period<br>of time, the circuit will be disabled. If a digital input, the circuit will be<br>enabled once the sensor is OFF. If an analog input, the circuit will be<br>enabled once the sensor is less than this value minus the value in the<br>'Time (sec)' field.<br>'Time (sec)' field: Differential value of this setpoint which the analog<br>input must be less than to enable the compressor.    |
| 210 | ECO LL3 D-SHT                                 | SETPOINT           | If active and the economizer liquid line solenoid is controlled on percent-<br>age (not last step), then a low discharge superheat test is added before<br>checking whether the solenoid should be turned on or not.<br>If discharge superheat is less than this value plus setpoint #84 "LO<br>DISC SHEAT", then the solenoid will simply be turned off.                                                                                                                                                                                                                                                                                                                                                           |
| 211 | NO OIL FLOW                                   | SETPOINT           | If active and there is an Oil Flow sensor specified in the 'Oil Flow<br>Switch' cell of the Circuit SI screen, then the Magnum will test for oil<br>flow. If the No Oil Flow sensor reading is OFF (Digital) or falls below<br>the value of this setpoint (Analog) for the specified period of time, then<br>a safety trip occurs.                                                                                                                                                                                                                                                                                                                                                                                  |
| 212 | COMP SPD FLT                                  | SETPOINT           | If active and there is an Compressor Speed Fault sensor specified in<br>the 'Compressor speed fault' cell of the Circuit Base screen, then the<br>Magnum will test for Compressor Speed Fault whether the compressor<br>is running or not. The fault sensor can be either an analog or digital<br>input. If the fault sensor reading is ON (Digital) or falls below the value<br>of this setpoint (Analog) for the specified period of time, then a safety<br>trip occurs.                                                                                                                                                                                                                                          |
| 213 | REHEAT TIMER                                  | TARGET             | Set point is used with the circuit reheat function to determine when a reheat flush is required.<br>Value: Time to stay in reheat flush state, expressed in seconds.<br>High Zone: If in cooling mode, the time to wait before flush.<br>Low Zone: If in dehumidification mode, the time to wait before flush.<br>Night setback cell will be the value that the compressor AO is incriminated<br>by when in reheat flush (no longer the safety time)<br>Time Field: This will set the AO value to the valve during a reheat flush. If<br>value is set to 0, the AO value is set to 100% during flush.                                                                                                               |
| 214 | TURBO BAL VLV<br>DELAY<br>(Only Turbocor)     | SETPOINT           | The delay between adjustments to the balancing valve is the 'Time(sec)' field, typical value is 20 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | TURBO STAGING<br>VLV DELAY<br>(Only Turbocor) | SETPOINT           | The adjustment made to open the valve will be the value of setpoint #214, typical value is 10%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 215 | TURBO RATIO<br>(Only Turbocor)                | SETPOINT           | The discharge to suction pressure ratio must be less than the value in Setpoint #215 (typical value is 2.4) or balancing value is at a 100% to end the balancing value opening.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 216 |                                   | SETPOINT | If active, and motor temperature is greater than this value than Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216 | LIS MOTOR TEMP                    | (TIME)   | If active, and motor temperature is greater than this value then Liquid<br>injection solenoid (LIS) is ON. If it is less than this value minus the<br>'Time (sec)' field of this setpoint then the LIS is OFF.<br>'Time (sec)' field: Offset of motor temperature to turn LIS OFF.                                                                                                                                                                                                                                                                                  |
| 217 | LOW EXV TARGET                    | SETPOINT | The minimum Refrigerant Level target. If active and the EXV is<br>controlled by Refrigerant Level, then a new variable level target logic<br>will be activated. As the unit capacity increases, the refrigerant level<br>target will change according to a linear calculation between setpoint<br>#9 "LEVEL TARGET" (the maximum target level) and setpoint #217<br>"LOW EXV TARGET" (the minimum target level). This relationship is<br>explained in the following graph:                                                                                          |
|     |                                   |          | EXV Level Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                   |          | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                   |          | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                   |          | 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                   |          | 35%EXV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                   |          | 30% Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                   |          | 25% Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                   |          | 20% 25% 80% 135% 190% 245% 300%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                   |          | 25% 80% 155% 150% 245% 500%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 218 | Enable cooling mode               | TARGET   | If the 'Forced Cooling' sensor is not used this set point will enable<br>cooling when the control temperature is above this value. Once in the<br>Cooling Mode the temperature must drop below this value minus the<br>Low Zone offset.<br>Value: Enable cooling temperature.<br>High Zone: Not used<br>Low Zone: Differential temperature to exit the Cooling Mode.<br>Night Setback: Will adjust the cooling enable value if system is in the<br>unoccupied mode.                                                                                                 |
| 219 | Enable heating mode               | TARGET   | If the 'Forced Heating' sensor is not used this set point will enable<br>heating when the control temperature is below this value. Once in the<br>Heating Mode the temperature must raise above this value plus the<br>High Zone offset.<br>Value: Enable heating temperature.<br>High Zone: Differential temperature to exit the Heating Mode.<br>Low Zone: Not used<br>Night Setback: Will adjust the heating enable value if system is in the<br>unoccupied mode.                                                                                                |
| 220 | Enable dehumidifica-<br>tion mode | TARGET   | If the 'Forced Dehumidifying' sensor is not used this set point will<br>enable dehumidification mode when the control humidity is above this<br>value and the dehumidify option is primary or the unit is in VENT ONLY<br>mode. Once in the Dehumidify Mode the humidity must drop below this<br>value minus the Low Zone offset.<br>Value: Enable dehumidification value.<br>High Zone: Not used<br>Low Zone: Differential humidity to exit the Dehumidify Mode.<br>Night Setback: Will adjust the dehumidify enable value if system is in<br>the unoccupied mode. |

| 221 | Exhaust fan fault                                             | ALARM    | Used for alarm message when the exhaust fan fault is on for a time greater than the value in the safety time cell                                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 222 | Heat Adjustment<br>USED WITH MOD<br>HOT WATER                 | DELAY    | Set point is used to adjust the heating VFD.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                 |
| 223 | Heat Rate of Change<br>USED WITH MOD<br>HOT WATER             | SETPOINT | Used with the heat control.<br>When the control temperature is within the control zone and above the<br>target and the heating control slope is greater than the value and the<br>heating is not fully loaded then set the heating state to loading. If above<br>target and the slope of the heating control is less than the value then<br>set the heating state to unloading.<br>If the compressor is not a fixed step then this value is divided by 2. |
| 224 | Heat VFD Multiplier/<br>Divisor<br>USED WITH MOD<br>HOT WATER | DELAY    | Set point usage is used to fine tune the heat VFD adjustments.<br>The value will be the multiplier and the MAX VFD ADJ will be the divisor<br>for the scaling of adjustment.                                                                                                                                                                                                                                                                              |
| 225 | Supply Fan Duct PSI                                           | TARGET   | Target for supply fan based upon duct pressure and control zone.<br>-Value: is the duct psi target for the supply fan.<br>-High Zone: Top of the control zone.<br>-Low Zone: Bottom of the control zone.                                                                                                                                                                                                                                                  |
| 226 | Supply Fan Duct<br>adjustments                                | DELAY    | Adjustments for the supply fan based upon duct pressure and control<br>zone.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                 |
| 227 | Clogged Filter                                                | ALARM    | If active the system will test for a clogged filter condition.<br>The clogged filter sensor and the supply fan must be on for a time<br>greater than indicated in the set point's safety time.                                                                                                                                                                                                                                                            |
| 228 | Energy Recovery<br>Wheel (ERW) Defrost                        | TIME     | If active this set point will enable a defrost cycle for the ERW.<br>The outside temperature must be less than the value of this setpoint to<br>enable the heat wheel to have a defrost cycle.<br>The safety time contains the length of the defrost cycle.<br>Note the heat wheel relay output contains minimum run time contains<br>the run time between defrost cycles.                                                                                |
| 229 | Energy Recovery<br>Wheel (ERW) Clean<br>Cycle                 | TIME     | If this setpoint is active, the system will determine if ERW requires a clean cycle when it is off.<br>Value: Accumulated supply fan run time between ERW cycles. If the ERW is off and the supply fan run time exceeds this value a CLEAN cycle will be initialized.<br>Safety Time: Length of time of the CLEAN cycle. During this cycle the ERW will be rotated.                                                                                       |

| 000 | MAY DIES DOL DOG                          | OFTOOM'T            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 230 | MAX DIFF PSI ROC                          | SETPOINT<br>(ALARM) | Maximum Differential Pressure Rate of Change before forcing a<br>change to the EXV position.<br>'Time (sec)' field: Seconds between samples used for calculating the<br>Rate of Change.<br>'Safety Down Time(min)' field: Minimum delay between EXV adjustments.<br>'Sec. to Ignore Safety' field: Delay after compressor start before ad-<br>justing the EXV based on the Maximum Differential Pressure Rate of<br>Change.<br>'Window to Extend Safety Time(sec)' field: Adjustment multiplier to the EXV.<br>'Safety Time Extension (sec)' field: Adjustment divisor to the EXV. |
| 231 | CO2 adjustments                           | DELAY               | Set point only used when the supply fan is controlled on CO2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                           |                     | Value: Minimum adjustment to the value of set point #225.<br>Safety time: Delay between adjustments.to the value of set point #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                           |                     | MAX ADJ: Maximum adjustment to the value of set point #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 232 | Supply Fan Cooling<br>Limits              | TARGET              | Used when the supply fan is controlled on CO2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                           |                     | Provides the minimum and maximum settings for value of set point #225 when the unit is the cooling mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                           |                     | Value: Minimum value setting of #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                           |                     | High Zone: Maximum value setting of #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 233 | Supply Fan Heating<br>Limits              | TARGET              | Used when the supply fan is controlled on CO2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                           |                     | The minimum and maximum settings for value of set point #225 when the unit is the heating mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                           |                     | Value: Minimum value setting of #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                           |                     | High Zone: Maximum value setting of #225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 231 | Single Zone Supply<br>Fan VFD Adjustments | DELAY               | Set point only used with single zone VAV and set point #225 being a SETPOINT type.<br>Provides the minimum and maximum Supply Fan VFD% adjustments, delay between adjustments.                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                           |                     | Value: Minimum adjustment to Supply Fan VFD% allowed.<br>Safety Time: Delay between adjustments to the Supply Fan VFD%.<br>MAX ADJ: Maximum adjustment to Supply Fan VFD% allowed.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 232 | Supply Fan Cooling<br>Adj                 | TARGET              | Set point only used with single zone VAV and set point #225 being a<br>SETPOINT type.<br>Value: Minimum supply fan speed when in cooling mode.<br>High Zone: Maximum supply fan speed when in cooling mode.<br>Low Zone: Minimum supply fan speed if high CO2 readings.                                                                                                                                                                                                                                                                                                            |
| 233 | Supply Fan Heating<br>Adj                 | TARGET              | Set point only used with single zone VAV and set point #225 being a<br>SETPOINT type.<br>Value: Minimum supply fan speed when in heating mode.<br>High Zone: Maximum supply fan speed when in heating mode.<br>Low Zone: Minimum supply fan speed if high CO2 readings.                                                                                                                                                                                                                                                                                                            |
| 234 | HP Freeze Protect                         | LOCKOUT             | This set point is to protect a heat pump when it is in a defrost cycle.<br>The coil temperature must be less than this value for the time indicated<br>in the safety time.                                                                                                                                                                                                                                                                                                                                                                                                         |

| 005 |                                         | TADOLT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 235 | LO AMB SUMP OFF                         | TARGET  | If type of condenser is evaporative condenser and the<br>setpoint is active and target type.<br>This is used with a sump pump and condenser fans.<br>If the ambient drops below the valve then disable the sump pump.<br>When the ambient goes above the HIGH ZONE<br>allow the sump pump as the first stage.<br>If the ambient goes below the HIGH ZONE minus the NIGHT<br>SETBACK but above the set point value plus the NIGHT SETBACK<br>then the sump pump becomes the<br>second stage. |
| 236 | NOT USED                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 237 | Low Suction Unload<br>Count             | LOCKOUT | If this set point is active the number of low suction unloads will be tracked. If number exceeds the value of this set point within the time in cell 'Delay Between Trips' then the circuit will be lockoff.                                                                                                                                                                                                                                                                                |
| 238 | ERW Bypass Damper<br>Adjustment         | DELAY   | Adjustments for the ERW bypass damper.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                         |
| 239 | ERW Bypass Damper<br>Multiplier/Divisor | DELAY   | Set point is used to fine tune the ERW bypass damper adjustments.<br>The value will be the multiplier and the MAX VFD ADJ will be the divi-<br>sor for the scaling of adjustment.                                                                                                                                                                                                                                                                                                           |
| 240 | Return Fan VFD Ad-<br>justment          | DELAY   | Adjustments for the return fan VFD.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum opening.<br>MAX VFD Opening: Maximum opening.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                            |
| 241 | NOT USED                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 242 | ERW Exhaust Fan<br>CO2                  | TARGET  | Set point is used to control the ERW exhaust fan AO when there is a<br>high CO2 present.<br>Value: Acceptable CO2 target.<br>High Zone: High zone for CO2, above this value must increase the<br>speed of the ERW exhaust fan's speed.<br>Low Zone: Low zone for CO2, below this value the speed can be de-<br>crease to its minimum value.                                                                                                                                                 |
| 243 | ERW Exhaust Fan<br>Adjustment           | DELAY   | Adjustments for the ERW exhaust fan.<br>Value: Minimum adjustment.<br>Safety time: Delay between adjustments.<br>MIN VFD Opening: Minimum speed.<br>MAX VFD Opening: Maximum speed.<br>MAX ADJ: Maximum adjustment to the opening percentage that can be<br>made at one time.                                                                                                                                                                                                               |
| 244 | ERW Exhaust Fan<br>Multiplier/Divisor   | DELAY   | Set point is used to fine tune the ERW exhaust fan's adjustments.<br>The value will be the multiplier and the MAX VFD ADJ will be the divi-<br>sor for the scaling of adjustment.                                                                                                                                                                                                                                                                                                           |
| 245 | Second Supply Fan<br>Control            | DELAY   | Set point is required if there are two supply fans.<br>Value: Minimum adjustment.<br>Safety time: Delay between turning on the 2 <sup>nd</sup> relay and setting the 2 <sup>nd</sup><br>fan's AO value.<br>MIN VFD Opening: AO speed setting when the 2 <sup>nd</sup> fan starts.<br>MAX VFD Opening: Maximum speed of the supply fans.                                                                                                                                                     |

| 246 | Vent Only Heat Target       | TARGET | If set point is active and a TARGET type and set point #111 is active,<br>option to allow heating if needed when in VENT ONLY mode.<br>Value: Is not used, the value of #111 will be used as the heating target.<br>High Zone: High zone for heating.<br>Low Zone: Low zone for heating.                                                                                                                     |
|-----|-----------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 247 | Vestibule Cooling<br>Target | TARGET | Set point provides controls for vestibule cooling<br>Value: Is the cooling target.<br>High Zone: High zone for cooling.<br>Low Zone: Low zone for cooling.                                                                                                                                                                                                                                                   |
| 248 | Vestibule Heating<br>Target | TARGET | Set point provides controls for vestibule heating<br>Value: Is the heating target.<br>High Zone: High zone for heating.<br>Low Zone: Low zone for heating.                                                                                                                                                                                                                                                   |
| 249 | Low Sump Level<br>Timer     | TIME   | If set point is active and there is a sump level sensor provides the timer<br>to generate the low sump level alarm.<br>Value: Is not used.<br>The safety time contains the time delay that the sump level sensor<br>indicates a low sump level condition.                                                                                                                                                    |
| 250 | Sump Heating Target         | TARGET | If set point is active and there is a sump temperature sensor and a<br>sump heater relay output then the sump temperature will be checked.<br>Value: Is the sump heating target.<br>High Zone: High zone for heating. If temperature is above the high<br>zone turn off the heating.<br>Low Zone: Low zone for heating. If temperature is below the low zone<br>turn on the heating.                         |
| 251 | FDD Control                 | TARGET | If the economizer Fault Detection and Diagnostics option has been<br>select, this set point will provide basic control information.<br>Value: Actual economizer opening.<br>Safety Time: This is the feed-back delay.<br>High Zone: High zone for economizer VFD opening.<br>Low Zone: Low zone for economizer VFD opening.                                                                                  |
|     | OilRecSpeed                 | DELAY  | HUMD or % - If setup as "Delay type" Fixed compressor cannot run<br>without the vfd tandem.<br>If not setup as a delay type the fixed compressor will be able to run<br>without the vfd compressor being available.<br>Value – Speed in % to move the compressor to during an oil balance/<br>boost.<br>Time – Amount of time to wait in seconds after oil level is tripped before<br>entering balance/boost |
| 252 | FDD Temperature<br>Control  | TARGET | If the economizer Fault Detection and Diagnostics option has been<br>select, this set point will provide temperature control information.<br>Value: Actual economizer opening.<br>Safety Time: Not used.<br>High Zone: High zone for mixed air temperature test.<br>Low Zone: Low zone for mixed air temperature test.                                                                                       |
|     | OilRecMaxBal                | ALARM  | SECONDS - Alarm Type<br>Value – Max time allowed in seconds to stay in balance mode before<br>moving onto Boost mode.                                                                                                                                                                                                                                                                                        |
| 253 | OB Off Cycle                | ALARM  | MINUTES – Alarm Type<br>Value – If an oil balance occurs twice within this time frame an alarm<br>will be posted and the balance mode will be skipped and will be sent<br>straight to a boost mode.                                                                                                                                                                                                          |
| 254 | OilRecMaxBst                | ALARM  | MINUTES – Alarm Type<br>Value – Max time allowed in minutes to stay in the boost mode before<br>locking out that circuit on an alarm.                                                                                                                                                                                                                                                                        |
| 255 | ToManyOilBst                | ALARM  | MINUTES – Alarm Type<br>Value – If an oil boost occurs twice within this time frame an alarm will<br>be posted and the circuit will be locked out                                                                                                                                                                                                                                                            |

## **Revision/Disclaimer Page**

| Date                  | Author | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02-13-12              | RCT    | Updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 03-08-12              | RCT    | Update with smoke purge function & setpoints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 04-12-12              | RCT    | Update with low static pressure safety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 05-14-12              | RCT    | Update with Smoke Purge, Relief Damper & Mod Gas logic. Setpoints have been updated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 07-09-12              | RCT    | Add RTU/Cooling states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07-24-12              | RCT    | RTU dehumidification update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 07-27-12              | RCT    | Updated to match RTU 09.10-M software<br>Setpoints<br>Added Direct Fire heating option<br>Expanded the Outdoor damper section<br>Forced (on sensors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-14-12              | RCT    | General updated based upon Tony Fisher's suggestions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11-21-12<br>(Rev 1.4) | RCT    | Add new return fan control logic.<br>Updated setpoints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 01-09-13              | MAS    | REV 1.5<br>Updated Photos<br>Updated The Warm Up Sequence<br>Updated Smoke Purge<br>Updated Setpoints:<br>Added Setpoints: 1 to 34, 37 to 101, 103 to 105, 109 to 115, 128, 142 to 145, 151 to 162, 166<br>to 170, 180, 191 to 196, 119 to 206, 208 to 217, 230<br>Setpoint #131 "CO2 Opening"<br>Setpoint #207 "CO2 High Min Damper Opening"<br>Setpoint #207 "CO2 High Min Damper Opening"<br>Setpoint #48 "CND ADJ DELAY"<br>Setpoint #49 "CND START %"<br>Setpoint #49 "CND START %"<br>Setpoint #50 "CND TRGT PSI"<br>Setpoint #51 "CND ADJ DIV"<br>Setpoint #52 "CND MIN %"<br>Setpoint #53 "CND ROC"<br>Setpoint #55 "CND MIN ADJ"<br>Setpoint #90 "CND FAULT"<br>Setpoint #193 "CND HI/LO ZONE"<br>Setpoint #194 "CND 2ND ZONE' |

| Date     | Author | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02-12-13 | MAS    | REV 1.6<br>Updated 12. RTU Safeties & Faults<br>Added 11. MAGNUM Alarms & Safeties<br>Updated 9.2 DETERMINE BUILDING MODES<br>Updated 9.2 DETERMINE BUILDING MODES<br>Updated 5.10.3. MOD GAS STAGE HEATING STATES: Changed Setpoint from #186"Mod<br>Gas ignition" to #185 "Mod Gas multiplier & divisor & time that the gas stage must be off ".<br>Updated 5.8. SELECTING HEATING INO (MOD GAS) Photo<br>Removed 6. RTU MCS CONNECT DISPLAY INFORMATION<br>Removed Setpoint #125 "Eco StageDly"<br>Updated Setpoints:<br>Setpoint #131 "CO2 opening"<br>Setpoint #136 "Supply fan adjustment multiplier & divisor"<br>Setpoint #138 "Relief fan adjustment multiplier & divisor"<br>Setpoint #138 "Relief damper multiplier & divisor"<br>Setpoint #138 "Relief damper multiplier & divisor"<br>Setpoint #224 "Heat VFD adjustment multiplier & divisor"<br>Setpoint #427 "CO2 Modulating Multiplier/Divisor"<br>Setpoint #45 "CND STG1 OFF"<br>Setpoint #45 "CND STG1 OFF"<br>Setpoint #48 "DUAL PSI DELTA"<br>Setpoint #48 "DUAL PSI DELTA"<br>Setpoint #48 "DUAL PSI DELTA"<br>Setpoint #48 "DUAL PSI DELTA"<br>Setpoint #49 "CND MIN RUN"<br>Setpoint #49 "CND MIN RUN"<br>Setpoint #50 "LO AMB SUMP OFF"<br>Setpoint #50 "LO AMB SUMP OFF"<br>Setpoint #50 "CND MAS PD"<br>Updated 5.3. SELECT CONDING INFO<br>Updated 5.4. SELECT CONDENSER INFO<br>Updated Revision Page |
| 04-04-13 | MAS    | REV 1.7<br>Updated Setpoints:<br>Setpoint #43 "CENT P-DWN FLA", Setpoint #44 "CENT P-DWN TMR", Setpoint #132 "En-<br>able Economizer" changed to NOT USED<br>Setpoint #119 "EcoOffsetON"<br>Setpoint #120 "Eco Stg Dely" changed to RESERVED<br>Setpoint #123 "Eco MAX ADJ"<br>Added Setpoint #139 "OIL LEVEL"<br>Setpoint #167-170 is Only used with Screw Compressor.<br>Setpoint #185 "Mod Gas Adjustment"<br>Setpoint #185 "Mod Gas multiplier & divisor & time that the gas stage must be off"<br>Setpoint #185 "Mod Gas Fan switch to high speed"<br>Setpoint #188 "Energy Recovery Wheel Fault" changed to "Energy Wheel Alarm"<br>Setpoint #190 "Warm Up"<br>Setpoint #190 "Warm Up"<br>Setpoint #199 "CFM Adjustment TARGET"<br>Setpoint #196 "Return Fan Multiplier/Divisor"<br>Setpoint #213 "REHEAT TIMER"<br>Setpoint #220 "Enable dehumidification mode"<br>Setpoint #222 "Heat VFD adjustment multiplier & divisor" changed to RESERVED<br>Updated 5.1.5. Unit Sensors<br>Updated 5.9. Select Heating Info (MOD GAS)<br>Updated 5.12. Select Heating Type (Direct Fire)<br>Added Section 5.16. Split Manifold Heating<br>Updated 12.10. "Energy Recovery Wheel Alarm (No Rotation)" changed to "Energy Wheel Alarm<br>(Fault)"                                                                                                                                      |

| Date        | Author | Description of Changes                                                                                                                                                                                                                                                                               |
|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-18-13    | MAS    | REV 1.8<br>Updated All Setpoints<br>Updated 7.3. Outdoor Air Damper<br>Updated 7.6. Energy Recovery Wheel (ERW) wheel<br>Updated 7.7. Energy Recovery Wheel (ERW) control logic<br>Updated 13. Select Heating Info (MOD GAS)<br>Update 25.3. Determine Unit Mode - Dehumidify mode<br>Updated Photos |
| 03-23-15    | DEW    | Changes pages 58 PHE-HEAT Sequence of Operations reversed                                                                                                                                                                                                                                            |
| 04-08-15    | DEW    | Change page 81 setpoint 108                                                                                                                                                                                                                                                                          |
| 05-14-15    | DEW    | Move to Indesign, edits, update setpoints                                                                                                                                                                                                                                                            |
| 06-29-30-15 | DEW    | Change format in Indesign                                                                                                                                                                                                                                                                            |
| 08-24-15    | DEW    | Changes to format only                                                                                                                                                                                                                                                                               |
| 08-31-15    | DEW    | Changes to EXV Suction/Dischsarge pages                                                                                                                                                                                                                                                              |
| 09-27-16    | DEW    | Add changes to setpoint 11 and 231                                                                                                                                                                                                                                                                   |
| 10-4,5-17   | DEW    | Fix setpoint 119 as per DC, clean up manual, add Keypad screen shots                                                                                                                                                                                                                                 |
| 11-01-17    | DEW    | Add setpoint 119 as target for Economizer                                                                                                                                                                                                                                                            |
| 12-11-17    | DEW    | Add Target type to setpoint 56 as per Danny Chapman                                                                                                                                                                                                                                                  |
| 05-16-18    | DEW    | Added Reheat Flushing info                                                                                                                                                                                                                                                                           |
| 05-24-18    | DEW    | Corrections from Danny C on Reheat Flush                                                                                                                                                                                                                                                             |
| 07-23-18    | DEW    | Add Oil Recovery Logic Variable speed & Fixed Speed Scroll Compressor                                                                                                                                                                                                                                |
| 07-23-18    | DEW    | Made change to setpoint 129 as per Brett                                                                                                                                                                                                                                                             |
| 08-14-18    | DEW    | Updated section on EXV Superheat - Add BMS info to this manual                                                                                                                                                                                                                                       |
| 12-11-18    | DEW    | Add Superheat module to RTU manual                                                                                                                                                                                                                                                                   |
| 12-18-18    | DEW    | Updated Setpoint #1 as per Jeff                                                                                                                                                                                                                                                                      |
| 12-6-2019   | DEW    | Add section on Single Zone VAV support                                                                                                                                                                                                                                                               |
| 04-17-2020  | DEW    | Changed description for Setpoint 159 as per BWW                                                                                                                                                                                                                                                      |
| 05-05-2020  | DEW    | hot gas reheat for dehumidification                                                                                                                                                                                                                                                                  |
| 05-20-2020  | DEW    | REV 3.1<br>Updated Chapter Condenser Control Logic - added screen shot to Condenser Reset                                                                                                                                                                                                            |
| 06-17-2020  | DEW    | Modify the EXV section, added separate SSH, SSH2, PID section                                                                                                                                                                                                                                        |
| 08-05-2020  | DEW    | Modify the BMS section, add Unit States, etc.                                                                                                                                                                                                                                                        |
| 08-11-2020  | DEW    | Changes made to setpoints 251-255                                                                                                                                                                                                                                                                    |
| 02-02-2021  | DEW    | Added UNLOAD RELAY AND COAST EMERGENCY STOP CIRCUIT BASE                                                                                                                                                                                                                                             |
| 122-2021    | DEW    | Added into for "load proof" for supply fan                                                                                                                                                                                                                                                           |
| 12-2-2021   | DEW    | Worked on section 4 on Outdoor Air Damper                                                                                                                                                                                                                                                            |
| 04-14-2022  | DEW    | Update photos, etc                                                                                                                                                                                                                                                                                   |
| 04-27-2022  | DEW    | Update Chapter on Dehumid                                                                                                                                                                                                                                                                            |
| 081-12-2022 | DEW    | rev 3.4.1 - 10/21/2022 Condenser section PIP                                                                                                                                                                                                                                                         |



## Providing HVAC/R Control Solutions Worldwide

5580 Enterprise Pkwy. Fort Myers, FL 33905 Office: (239) 694-0089 Fax: (239) 694-0031 www.mcscontrols.com